Metamath Proof Explorer


Theorem intimass

Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimass A B x | a A x = a B

Proof

Step Hyp Ref Expression
1 r19.12 b B a A b y a a A b B b y a
2 elimaint y A B b B a A b y a
3 elintima y x | a A x = a B a A b B b y a
4 1 2 3 3imtr4i y A B y x | a A x = a B
5 4 ssriv A B x | a A x = a B