Metamath Proof Explorer


Theorem invdisjrab

Description: The restricted class abstractions { x e. B | C = y } for distinct y e. A are disjoint. (Contributed by AV, 6-May-2020)

Ref Expression
Assertion invdisjrab DisjyAxB|C=y

Proof

Step Hyp Ref Expression
1 nfcv _xz
2 nfcv _xB
3 nfcsb1v _xz/xC
4 3 nfeq1 xz/xC=y
5 csbeq1a x=zC=z/xC
6 5 eqeq1d x=zC=yz/xC=y
7 1 2 4 6 elrabf zxB|C=yzBz/xC=y
8 ax-1 z/xC=yyAz/xC=y
9 7 8 simplbiim zxB|C=yyAz/xC=y
10 9 impcom yAzxB|C=yz/xC=y
11 10 rgen2 yAzxB|C=yz/xC=y
12 invdisj yAzxB|C=yz/xC=yDisjyAxB|C=y
13 11 12 ax-mp DisjyAxB|C=y