| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inveq.b |  | 
						
							| 2 |  | inveq.n |  | 
						
							| 3 |  | inveq.c |  | 
						
							| 4 |  | inveq.x |  | 
						
							| 5 |  | inveq.y |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 3 | adantr |  | 
						
							| 8 | 5 | adantr |  | 
						
							| 9 | 4 | adantr |  | 
						
							| 10 | 1 2 3 4 5 6 | isinv |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 10 11 | biimtrdi |  | 
						
							| 13 | 12 | com12 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | impcom |  | 
						
							| 16 | 1 2 3 4 5 6 | isinv |  | 
						
							| 17 |  | simpl |  | 
						
							| 18 | 16 17 | biimtrdi |  | 
						
							| 19 | 18 | adantld |  | 
						
							| 20 | 19 | imp |  | 
						
							| 21 | 1 6 7 8 9 15 20 | sectcan |  | 
						
							| 22 | 21 | ex |  |