Metamath Proof Explorer


Theorem iocunico

Description: Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019)

Ref Expression
Assertion iocunico A*B*C*A<BB<CABBC=AC

Proof

Step Hyp Ref Expression
1 un23 ABBBC=ABBCB
2 unundir ABBCB=ABBBCB
3 uncom BCB=BBC
4 3 uneq2i ABBBCB=ABBBBC
5 1 2 4 3eqtrri ABBBBC=ABBBC
6 simpl1 A*B*C*A<BB<CA*
7 simpl2 A*B*C*A<BB<CB*
8 simprl A*B*C*A<BB<CA<B
9 ioounsn A*B*A<BABB=AB
10 6 7 8 9 syl3anc A*B*C*A<BB<CABB=AB
11 simpl3 A*B*C*A<BB<CC*
12 simprr A*B*C*A<BB<CB<C
13 snunioo B*C*B<CBBC=BC
14 7 11 12 13 syl3anc A*B*C*A<BB<CBBC=BC
15 10 14 uneq12d A*B*C*A<BB<CABBBBC=ABBC
16 ioojoin A*B*C*A<BB<CABBBC=AC
17 5 15 16 3eqtr3a A*B*C*A<BB<CABBC=AC