Metamath Proof Explorer


Theorem iocunico

Description: Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019)

Ref Expression
Assertion iocunico A * B * C * A < B B < C A B B C = A C

Proof

Step Hyp Ref Expression
1 un23 A B B B C = A B B C B
2 unundir A B B C B = A B B B C B
3 uncom B C B = B B C
4 3 uneq2i A B B B C B = A B B B B C
5 1 2 4 3eqtrri A B B B B C = A B B B C
6 simpl1 A * B * C * A < B B < C A *
7 simpl2 A * B * C * A < B B < C B *
8 simprl A * B * C * A < B B < C A < B
9 ioounsn A * B * A < B A B B = A B
10 6 7 8 9 syl3anc A * B * C * A < B B < C A B B = A B
11 simpl3 A * B * C * A < B B < C C *
12 simprr A * B * C * A < B B < C B < C
13 snunioo B * C * B < C B B C = B C
14 7 11 12 13 syl3anc A * B * C * A < B B < C B B C = B C
15 10 14 uneq12d A * B * C * A < B B < C A B B B B C = A B B C
16 ioojoin A * B * C * A < B B < C A B B B C = A C
17 5 15 16 3eqtr3a A * B * C * A < B B < C A B B C = A C