| Step |
Hyp |
Ref |
Expression |
| 1 |
|
un23 |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( 𝐵 (,) 𝐶 ) ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 (,) 𝐶 ) ) ∪ { 𝐵 } ) |
| 2 |
|
unundir |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ ( 𝐵 (,) 𝐶 ) ) ∪ { 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) |
| 3 |
|
uncom |
⊢ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) = ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) |
| 4 |
3
|
uneq2i |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) ) |
| 5 |
1 2 4
|
3eqtrri |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( 𝐵 (,) 𝐶 ) ) |
| 6 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
| 7 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
| 8 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐴 < 𝐵 ) |
| 9 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 11 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 12 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → 𝐵 < 𝐶 ) |
| 13 |
|
snunioo |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
| 14 |
7 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
| 15 |
10 14
|
uneq12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( { 𝐵 } ∪ ( 𝐵 (,) 𝐶 ) ) ) = ( ( 𝐴 (,] 𝐵 ) ∪ ( 𝐵 [,) 𝐶 ) ) ) |
| 16 |
|
ioojoin |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∪ ( 𝐵 (,) 𝐶 ) ) = ( 𝐴 (,) 𝐶 ) ) |
| 17 |
5 15 16
|
3eqtr3a |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) ) → ( ( 𝐴 (,] 𝐵 ) ∪ ( 𝐵 [,) 𝐶 ) ) = ( 𝐴 (,) 𝐶 ) ) |