| Step | Hyp | Ref | Expression | 
						
							| 1 |  | un23 | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐵 (,) 𝐶 ) )  ∪  { 𝐵 } ) | 
						
							| 2 |  | unundir | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∪  ( 𝐵 (,) 𝐶 ) )  ∪  { 𝐵 } )  =  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( ( 𝐵 (,) 𝐶 )  ∪  { 𝐵 } ) ) | 
						
							| 3 |  | uncom | ⊢ ( ( 𝐵 (,) 𝐶 )  ∪  { 𝐵 } )  =  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) | 
						
							| 4 | 3 | uneq2i | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( ( 𝐵 (,) 𝐶 )  ∪  { 𝐵 } ) )  =  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) ) | 
						
							| 5 | 1 2 4 | 3eqtrri | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) )  =  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( 𝐵 (,) 𝐶 ) ) | 
						
							| 6 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 8 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐴  <  𝐵 ) | 
						
							| 9 |  | ioounsn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 11 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  <  𝐶 ) | 
						
							| 13 |  | snunioo | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝐵  <  𝐶 )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 14 | 7 11 12 13 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 15 | 10 14 | uneq12d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( { 𝐵 }  ∪  ( 𝐵 (,) 𝐶 ) ) )  =  ( ( 𝐴 (,] 𝐵 )  ∪  ( 𝐵 [,) 𝐶 ) ) ) | 
						
							| 16 |  | ioojoin | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∪  ( 𝐵 (,) 𝐶 ) )  =  ( 𝐴 (,) 𝐶 ) ) | 
						
							| 17 | 5 15 16 | 3eqtr3a | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,] 𝐵 )  ∪  ( 𝐵 [,) 𝐶 ) )  =  ( 𝐴 (,) 𝐶 ) ) |