| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-in | ⊢ ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  =  { 𝑥  ∣  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ∧  𝑥  ∈  ( 𝐵 [,) 𝐶 ) ) } | 
						
							| 2 |  | elioc1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 4 |  | 3simpb | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝐴  <  𝑥  ∧  𝑥  ≤  𝐵 )  →  ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 5 | 3 4 | biimtrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  →  ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 6 |  | elico1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 [,) 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  <  𝐶 ) ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 [,) 𝐶 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  <  𝐶 ) ) ) | 
						
							| 8 |  | 3simpa | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  <  𝐶 )  →  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) ) | 
						
							| 9 | 7 8 | biimtrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 [,) 𝐶 )  →  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) ) ) | 
						
							| 10 | 5 9 | anim12d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ∧  𝑥  ∈  ( 𝐵 [,) 𝐶 ) )  →  ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) ) ) ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) )  →  𝐵  ≤  𝑥 ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 14 | 11 12 13 | 3jca | ⊢ ( ( ( 𝑥  ∈  ℝ*  ∧  𝑥  ≤  𝐵 )  ∧  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥 ) )  →  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 15 | 10 14 | syl6 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ∧  𝑥  ∈  ( 𝐵 [,) 𝐶 ) )  →  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 16 |  | elicc1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 17 | 16 | anidms | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝑥  ∈  ( 𝐵 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ*  ∧  𝐵  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 19 | 15 18 | sylibrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ∧  𝑥  ∈  ( 𝐵 [,) 𝐶 ) )  →  𝑥  ∈  ( 𝐵 [,] 𝐵 ) ) ) | 
						
							| 20 | 19 | ss2abdv | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  { 𝑥  ∣  ( 𝑥  ∈  ( 𝐴 (,] 𝐵 )  ∧  𝑥  ∈  ( 𝐵 [,) 𝐶 ) ) }  ⊆  { 𝑥  ∣  𝑥  ∈  ( 𝐵 [,] 𝐵 ) } ) | 
						
							| 21 | 1 20 | eqsstrid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  ⊆  { 𝑥  ∣  𝑥  ∈  ( 𝐵 [,] 𝐵 ) } ) | 
						
							| 22 |  | abid2 | ⊢ { 𝑥  ∣  𝑥  ∈  ( 𝐵 [,] 𝐵 ) }  =  ( 𝐵 [,] 𝐵 ) | 
						
							| 23 | 21 22 | sseqtrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  ⊆  ( 𝐵 [,] 𝐵 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  ⊆  ( 𝐵 [,] 𝐵 ) ) | 
						
							| 25 |  | iccid | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 28 | 24 27 | sseqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  ⊆  { 𝐵 } ) | 
						
							| 29 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 30 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐴  <  𝐵 ) | 
						
							| 31 | 29 | xrleidd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ≤  𝐵 ) | 
						
							| 32 |  | elioc1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐵  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 33 | 32 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( 𝐵  ∈  ( 𝐴 (,] 𝐵 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 35 | 29 30 31 34 | mpbir3and | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ∈  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 36 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  <  𝐶 ) | 
						
							| 37 |  | elico1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  ∈  ( 𝐵 [,) 𝐶 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐵  ∧  𝐵  <  𝐶 ) ) ) | 
						
							| 38 | 37 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  ∈  ( 𝐵 [,) 𝐶 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐵  ∧  𝐵  <  𝐶 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( 𝐵  ∈  ( 𝐵 [,) 𝐶 )  ↔  ( 𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐵  ∧  𝐵  <  𝐶 ) ) ) | 
						
							| 40 | 29 31 36 39 | mpbir3and | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ∈  ( 𝐵 [,) 𝐶 ) ) | 
						
							| 41 | 35 40 | elind | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  𝐵  ∈  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) ) ) | 
						
							| 42 | 41 | snssd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  { 𝐵 }  ⊆  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) ) ) | 
						
							| 43 | 28 42 | eqssd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  <  𝐵  ∧  𝐵  <  𝐶 ) )  →  ( ( 𝐴 (,] 𝐵 )  ∩  ( 𝐵 [,) 𝐶 ) )  =  { 𝐵 } ) |