| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-in |  |-  ( ( A (,] B ) i^i ( B [,) C ) ) = { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) } | 
						
							| 2 |  | elioc1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) ) | 
						
							| 4 |  | 3simpb |  |-  ( ( x e. RR* /\ A < x /\ x <_ B ) -> ( x e. RR* /\ x <_ B ) ) | 
						
							| 5 | 3 4 | biimtrdi |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A (,] B ) -> ( x e. RR* /\ x <_ B ) ) ) | 
						
							| 6 |  | elico1 |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) | 
						
							| 8 |  | 3simpa |  |-  ( ( x e. RR* /\ B <_ x /\ x < C ) -> ( x e. RR* /\ B <_ x ) ) | 
						
							| 9 | 7 8 | biimtrdi |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) -> ( x e. RR* /\ B <_ x ) ) ) | 
						
							| 10 | 5 9 | anim12d |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x e. RR* ) | 
						
							| 12 |  | simprr |  |-  ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> B <_ x ) | 
						
							| 13 |  | simplr |  |-  ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x <_ B ) | 
						
							| 14 | 11 12 13 | 3jca |  |-  ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> ( x e. RR* /\ B <_ x /\ x <_ B ) ) | 
						
							| 15 | 10 14 | syl6 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) | 
						
							| 16 |  | elicc1 |  |-  ( ( B e. RR* /\ B e. RR* ) -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) | 
						
							| 17 | 16 | anidms |  |-  ( B e. RR* -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) | 
						
							| 19 | 15 18 | sylibrd |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> x e. ( B [,] B ) ) ) | 
						
							| 20 | 19 | ss2abdv |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) } C_ { x | x e. ( B [,] B ) } ) | 
						
							| 21 | 1 20 | eqsstrid |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { x | x e. ( B [,] B ) } ) | 
						
							| 22 |  | abid2 |  |-  { x | x e. ( B [,] B ) } = ( B [,] B ) | 
						
							| 23 | 21 22 | sseqtrdi |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) ) | 
						
							| 25 |  | iccid |  |-  ( B e. RR* -> ( B [,] B ) = { B } ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B [,] B ) = { B } ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B [,] B ) = { B } ) | 
						
							| 28 | 24 27 | sseqtrd |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { B } ) | 
						
							| 29 |  | simpl2 |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR* ) | 
						
							| 30 |  | simprl |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> A < B ) | 
						
							| 31 | 29 | xrleidd |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B <_ B ) | 
						
							| 32 |  | elioc1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) | 
						
							| 33 | 32 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) | 
						
							| 35 | 29 30 31 34 | mpbir3and |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( A (,] B ) ) | 
						
							| 36 |  | simprr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B < C ) | 
						
							| 37 |  | elico1 |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) | 
						
							| 38 | 37 | 3adant1 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) | 
						
							| 40 | 29 31 36 39 | mpbir3and |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( B [,) C ) ) | 
						
							| 41 | 35 40 | elind |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( ( A (,] B ) i^i ( B [,) C ) ) ) | 
						
							| 42 | 41 | snssd |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> { B } C_ ( ( A (,] B ) i^i ( B [,) C ) ) ) | 
						
							| 43 | 28 42 | eqssd |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) = { B } ) |