Step |
Hyp |
Ref |
Expression |
1 |
|
df-in |
|- ( ( A (,] B ) i^i ( B [,) C ) ) = { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) } |
2 |
|
elioc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) ) |
3 |
2
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) ) |
4 |
|
3simpb |
|- ( ( x e. RR* /\ A < x /\ x <_ B ) -> ( x e. RR* /\ x <_ B ) ) |
5 |
3 4
|
syl6bi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A (,] B ) -> ( x e. RR* /\ x <_ B ) ) ) |
6 |
|
elico1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
7 |
6
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
8 |
|
3simpa |
|- ( ( x e. RR* /\ B <_ x /\ x < C ) -> ( x e. RR* /\ B <_ x ) ) |
9 |
7 8
|
syl6bi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) -> ( x e. RR* /\ B <_ x ) ) ) |
10 |
5 9
|
anim12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) ) ) |
11 |
|
simpll |
|- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x e. RR* ) |
12 |
|
simprr |
|- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> B <_ x ) |
13 |
|
simplr |
|- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x <_ B ) |
14 |
11 12 13
|
3jca |
|- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> ( x e. RR* /\ B <_ x /\ x <_ B ) ) |
15 |
10 14
|
syl6 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) |
16 |
|
elicc1 |
|- ( ( B e. RR* /\ B e. RR* ) -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) |
17 |
16
|
anidms |
|- ( B e. RR* -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) |
18 |
17
|
3ad2ant2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) ) |
19 |
15 18
|
sylibrd |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> x e. ( B [,] B ) ) ) |
20 |
19
|
ss2abdv |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) } C_ { x | x e. ( B [,] B ) } ) |
21 |
1 20
|
eqsstrid |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { x | x e. ( B [,] B ) } ) |
22 |
|
abid2 |
|- { x | x e. ( B [,] B ) } = ( B [,] B ) |
23 |
21 22
|
sseqtrdi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) ) |
24 |
23
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) ) |
25 |
|
iccid |
|- ( B e. RR* -> ( B [,] B ) = { B } ) |
26 |
25
|
3ad2ant2 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B [,] B ) = { B } ) |
27 |
26
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B [,] B ) = { B } ) |
28 |
24 27
|
sseqtrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { B } ) |
29 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR* ) |
30 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> A < B ) |
31 |
29
|
xrleidd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B <_ B ) |
32 |
|
elioc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) |
33 |
32
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) |
34 |
33
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) ) |
35 |
29 30 31 34
|
mpbir3and |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( A (,] B ) ) |
36 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B < C ) |
37 |
|
elico1 |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) |
38 |
37
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) |
39 |
38
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) ) |
40 |
29 31 36 39
|
mpbir3and |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( B [,) C ) ) |
41 |
35 40
|
elind |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. ( ( A (,] B ) i^i ( B [,) C ) ) ) |
42 |
41
|
snssd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> { B } C_ ( ( A (,] B ) i^i ( B [,) C ) ) ) |
43 |
28 42
|
eqssd |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( A (,] B ) i^i ( B [,) C ) ) = { B } ) |