| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 2 |  | ioounsn |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 3 | 1 2 | syl3an2 |  |-  ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 4 |  | ioombl |  |-  ( A (,) B ) e. dom vol | 
						
							| 5 |  | iccid |  |-  ( B e. RR* -> ( B [,] B ) = { B } ) | 
						
							| 6 | 1 5 | syl |  |-  ( B e. RR -> ( B [,] B ) = { B } ) | 
						
							| 7 |  | iccmbl |  |-  ( ( B e. RR /\ B e. RR ) -> ( B [,] B ) e. dom vol ) | 
						
							| 8 | 7 | anidms |  |-  ( B e. RR -> ( B [,] B ) e. dom vol ) | 
						
							| 9 | 6 8 | eqeltrrd |  |-  ( B e. RR -> { B } e. dom vol ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. RR* /\ B e. RR ) -> { B } e. dom vol ) | 
						
							| 11 |  | unmbl |  |-  ( ( ( A (,) B ) e. dom vol /\ { B } e. dom vol ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) | 
						
							| 12 | 4 10 11 | sylancr |  |-  ( ( A e. RR* /\ B e. RR ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) | 
						
							| 14 | 3 13 | eqeltrrd |  |-  ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( A (,] B ) e. dom vol ) | 
						
							| 15 | 14 | 3expa |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A < B ) -> ( A (,] B ) e. dom vol ) | 
						
							| 16 |  | id |  |-  ( A e. RR* -> A e. RR* ) | 
						
							| 17 |  | xrlenlt |  |-  ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) | 
						
							| 18 | 1 16 17 | syl2anr |  |-  ( ( A e. RR* /\ B e. RR ) -> ( B <_ A <-> -. A < B ) ) | 
						
							| 19 | 18 | biimp3ar |  |-  ( ( A e. RR* /\ B e. RR /\ -. A < B ) -> B <_ A ) | 
						
							| 20 |  | ioc0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> B <_ A ) ) | 
						
							| 21 | 20 | biimp3ar |  |-  ( ( A e. RR* /\ B e. RR* /\ B <_ A ) -> ( A (,] B ) = (/) ) | 
						
							| 22 | 1 21 | syl3an2 |  |-  ( ( A e. RR* /\ B e. RR /\ B <_ A ) -> ( A (,] B ) = (/) ) | 
						
							| 23 |  | 0mbl |  |-  (/) e. dom vol | 
						
							| 24 | 22 23 | eqeltrdi |  |-  ( ( A e. RR* /\ B e. RR /\ B <_ A ) -> ( A (,] B ) e. dom vol ) | 
						
							| 25 | 19 24 | syld3an3 |  |-  ( ( A e. RR* /\ B e. RR /\ -. A < B ) -> ( A (,] B ) e. dom vol ) | 
						
							| 26 | 25 | 3expa |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ -. A < B ) -> ( A (,] B ) e. dom vol ) | 
						
							| 27 | 15 26 | pm2.61dan |  |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) e. dom vol ) |