| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 2 |
|
ioounsn |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 3 |
1 2
|
syl3an2 |
|- ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 4 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 5 |
|
iccid |
|- ( B e. RR* -> ( B [,] B ) = { B } ) |
| 6 |
1 5
|
syl |
|- ( B e. RR -> ( B [,] B ) = { B } ) |
| 7 |
|
iccmbl |
|- ( ( B e. RR /\ B e. RR ) -> ( B [,] B ) e. dom vol ) |
| 8 |
7
|
anidms |
|- ( B e. RR -> ( B [,] B ) e. dom vol ) |
| 9 |
6 8
|
eqeltrrd |
|- ( B e. RR -> { B } e. dom vol ) |
| 10 |
9
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> { B } e. dom vol ) |
| 11 |
|
unmbl |
|- ( ( ( A (,) B ) e. dom vol /\ { B } e. dom vol ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) |
| 12 |
4 10 11
|
sylancr |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) |
| 13 |
12
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( ( A (,) B ) u. { B } ) e. dom vol ) |
| 14 |
3 13
|
eqeltrrd |
|- ( ( A e. RR* /\ B e. RR /\ A < B ) -> ( A (,] B ) e. dom vol ) |
| 15 |
14
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A < B ) -> ( A (,] B ) e. dom vol ) |
| 16 |
|
id |
|- ( A e. RR* -> A e. RR* ) |
| 17 |
|
xrlenlt |
|- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 18 |
1 16 17
|
syl2anr |
|- ( ( A e. RR* /\ B e. RR ) -> ( B <_ A <-> -. A < B ) ) |
| 19 |
18
|
biimp3ar |
|- ( ( A e. RR* /\ B e. RR /\ -. A < B ) -> B <_ A ) |
| 20 |
|
ioc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> B <_ A ) ) |
| 21 |
20
|
biimp3ar |
|- ( ( A e. RR* /\ B e. RR* /\ B <_ A ) -> ( A (,] B ) = (/) ) |
| 22 |
1 21
|
syl3an2 |
|- ( ( A e. RR* /\ B e. RR /\ B <_ A ) -> ( A (,] B ) = (/) ) |
| 23 |
|
0mbl |
|- (/) e. dom vol |
| 24 |
22 23
|
eqeltrdi |
|- ( ( A e. RR* /\ B e. RR /\ B <_ A ) -> ( A (,] B ) e. dom vol ) |
| 25 |
19 24
|
syld3an3 |
|- ( ( A e. RR* /\ B e. RR /\ -. A < B ) -> ( A (,] B ) e. dom vol ) |
| 26 |
25
|
3expa |
|- ( ( ( A e. RR* /\ B e. RR ) /\ -. A < B ) -> ( A (,] B ) e. dom vol ) |
| 27 |
15 26
|
pm2.61dan |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) e. dom vol ) |