Metamath Proof Explorer


Theorem iocmbl

Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019)

Ref Expression
Assertion iocmbl A * B A B dom vol

Proof

Step Hyp Ref Expression
1 rexr B B *
2 ioounsn A * B * A < B A B B = A B
3 1 2 syl3an2 A * B A < B A B B = A B
4 ioombl A B dom vol
5 iccid B * B B = B
6 1 5 syl B B B = B
7 iccmbl B B B B dom vol
8 7 anidms B B B dom vol
9 6 8 eqeltrrd B B dom vol
10 9 adantl A * B B dom vol
11 unmbl A B dom vol B dom vol A B B dom vol
12 4 10 11 sylancr A * B A B B dom vol
13 12 3adant3 A * B A < B A B B dom vol
14 3 13 eqeltrrd A * B A < B A B dom vol
15 14 3expa A * B A < B A B dom vol
16 id A * A *
17 xrlenlt B * A * B A ¬ A < B
18 1 16 17 syl2anr A * B B A ¬ A < B
19 18 biimp3ar A * B ¬ A < B B A
20 ioc0 A * B * A B = B A
21 20 biimp3ar A * B * B A A B =
22 1 21 syl3an2 A * B B A A B =
23 0mbl dom vol
24 22 23 eqeltrdi A * B B A A B dom vol
25 19 24 syld3an3 A * B ¬ A < B A B dom vol
26 25 3expa A * B ¬ A < B A B dom vol
27 15 26 pm2.61dan A * B A B dom vol