Metamath Proof Explorer


Theorem iocmbl

Description: An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019)

Ref Expression
Assertion iocmbl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
2 ioounsn ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) )
3 1 2 syl3an2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) )
4 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
5 iccid ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } )
6 1 5 syl ( 𝐵 ∈ ℝ → ( 𝐵 [,] 𝐵 ) = { 𝐵 } )
7 iccmbl ( ( 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 [,] 𝐵 ) ∈ dom vol )
8 7 anidms ( 𝐵 ∈ ℝ → ( 𝐵 [,] 𝐵 ) ∈ dom vol )
9 6 8 eqeltrrd ( 𝐵 ∈ ℝ → { 𝐵 } ∈ dom vol )
10 9 adantl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → { 𝐵 } ∈ dom vol )
11 unmbl ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐵 } ∈ dom vol ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol )
12 4 10 11 sylancr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol )
13 12 3adant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol )
14 3 13 eqeltrrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )
15 14 3expa ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )
16 id ( 𝐴 ∈ ℝ*𝐴 ∈ ℝ* )
17 xrlenlt ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
18 1 16 17 syl2anr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
19 18 biimp3ar ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵 ) → 𝐵𝐴 )
20 ioc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐵 ) = ∅ ↔ 𝐵𝐴 ) )
21 20 biimp3ar ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐴 ) → ( 𝐴 (,] 𝐵 ) = ∅ )
22 1 21 syl3an2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴 ) → ( 𝐴 (,] 𝐵 ) = ∅ )
23 0mbl ∅ ∈ dom vol
24 22 23 eqeltrdi ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵𝐴 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )
25 19 24 syld3an3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )
26 25 3expa ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )
27 15 26 pm2.61dan ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol )