Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
2 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
3 |
1 2
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
4 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
5 |
|
iccid |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
6 |
1 5
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
7 |
|
iccmbl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 [,] 𝐵 ) ∈ dom vol ) |
8 |
7
|
anidms |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,] 𝐵 ) ∈ dom vol ) |
9 |
6 8
|
eqeltrrd |
⊢ ( 𝐵 ∈ ℝ → { 𝐵 } ∈ dom vol ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → { 𝐵 } ∈ dom vol ) |
11 |
|
unmbl |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐵 } ∈ dom vol ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol ) |
12 |
4 10 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ dom vol ) |
14 |
3 13
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |
16 |
|
id |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ∈ ℝ* ) |
17 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
18 |
1 16 17
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
19 |
18
|
biimp3ar |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
20 |
|
ioc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
21 |
20
|
biimp3ar |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,] 𝐵 ) = ∅ ) |
22 |
1 21
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,] 𝐵 ) = ∅ ) |
23 |
|
0mbl |
⊢ ∅ ∈ dom vol |
24 |
22 23
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |
25 |
19 24
|
syld3an3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |
26 |
25
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |
27 |
15 26
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ∈ dom vol ) |