| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ* ) | 
						
							| 2 |  | ioounsn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  =  ( 𝐴 (,] 𝐵 ) ) | 
						
							| 4 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 5 |  | iccid | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵 [,] 𝐵 )  =  { 𝐵 } ) | 
						
							| 7 |  | iccmbl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵 [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 8 | 7 | anidms | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵 [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 9 | 6 8 | eqeltrrd | ⊢ ( 𝐵  ∈  ℝ  →  { 𝐵 }  ∈  dom  vol ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  { 𝐵 }  ∈  dom  vol ) | 
						
							| 11 |  | unmbl | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∈  dom  vol  ∧  { 𝐵 }  ∈  dom  vol )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∈  dom  vol ) | 
						
							| 12 | 4 10 11 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∈  dom  vol ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( ( 𝐴 (,) 𝐵 )  ∪  { 𝐵 } )  ∈  dom  vol ) | 
						
							| 14 | 3 13 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) | 
						
							| 15 | 14 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) | 
						
							| 16 |  | id | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ∈  ℝ* ) | 
						
							| 17 |  | xrlenlt | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 18 | 1 16 17 | syl2anr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 19 | 18 | biimp3ar | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ≤  𝐴 ) | 
						
							| 20 |  | ioc0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 (,] 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 21 | 20 | biimp3ar | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴 (,] 𝐵 )  =  ∅ ) | 
						
							| 22 | 1 21 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴 (,] 𝐵 )  =  ∅ ) | 
						
							| 23 |  | 0mbl | ⊢ ∅  ∈  dom  vol | 
						
							| 24 | 22 23 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≤  𝐴 )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) | 
						
							| 25 | 19 24 | syld3an3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) | 
						
							| 26 | 25 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) | 
						
							| 27 | 15 26 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 (,] 𝐵 )  ∈  dom  vol ) |