Metamath Proof Explorer


Theorem cnioobibld

Description: A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider F = ( x e. ( 0 (,) 1 ) |-> ( 1 / x ) ) . See cniccibl for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019)

Ref Expression
Hypotheses cnioobibld.1 ( 𝜑𝐴 ∈ ℝ )
cnioobibld.2 ( 𝜑𝐵 ∈ ℝ )
cnioobibld.3 ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
cnioobibld.4 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
Assertion cnioobibld ( 𝜑𝐹 ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 cnioobibld.1 ( 𝜑𝐴 ∈ ℝ )
2 cnioobibld.2 ( 𝜑𝐵 ∈ ℝ )
3 cnioobibld.3 ( 𝜑𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )
4 cnioobibld.4 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 )
5 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
6 cnmbf ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ MblFn )
7 5 3 6 sylancr ( 𝜑𝐹 ∈ MblFn )
8 cncff ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )
9 fdm ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ → dom 𝐹 = ( 𝐴 (,) 𝐵 ) )
10 3 8 9 3syl ( 𝜑 → dom 𝐹 = ( 𝐴 (,) 𝐵 ) )
11 10 fveq2d ( 𝜑 → ( vol ‘ dom 𝐹 ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )
12 ioovolcl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ )
13 1 2 12 syl2anc ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ )
14 11 13 eqeltrd ( 𝜑 → ( vol ‘ dom 𝐹 ) ∈ ℝ )
15 bddibl ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 )
16 7 14 4 15 syl3anc ( 𝜑𝐹 ∈ 𝐿1 )