| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnioobibld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | cnioobibld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | cnioobibld.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 4 |  | cnioobibld.4 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 ) | 
						
							| 5 |  | ioombl | ⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol | 
						
							| 6 |  | cnmbf | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ∈  dom  vol  ∧  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  →  𝐹  ∈  MblFn ) | 
						
							| 7 | 5 3 6 | sylancr | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 8 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 9 |  | fdm | ⊢ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ  →  dom  𝐹  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 10 | 3 8 9 | 3syl | ⊢ ( 𝜑  →  dom  𝐹  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝜑  →  ( vol ‘ dom  𝐹 )  =  ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 12 |  | ioovolcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 13 | 1 2 12 | syl2anc | ⊢ ( 𝜑  →  ( vol ‘ ( 𝐴 (,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 14 | 11 13 | eqeltrd | ⊢ ( 𝜑  →  ( vol ‘ dom  𝐹 )  ∈  ℝ ) | 
						
							| 15 |  | bddibl | ⊢ ( ( 𝐹  ∈  MblFn  ∧  ( vol ‘ dom  𝐹 )  ∈  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  𝑥 )  →  𝐹  ∈  𝐿1 ) | 
						
							| 16 | 7 14 4 15 | syl3anc | ⊢ ( 𝜑  →  𝐹  ∈  𝐿1 ) |