Step |
Hyp |
Ref |
Expression |
1 |
|
cnioobibld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
cnioobibld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
cnioobibld.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
4 |
|
cnioobibld.4 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
5 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
6 |
|
cnmbf |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |
7 |
5 3 6
|
sylancr |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
8 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
9 |
|
fdm |
⊢ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
12 |
|
ioovolcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
13 |
1 2 12
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
14 |
11 13
|
eqeltrd |
⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
15 |
|
bddibl |
⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) |
16 |
7 14 4 15
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |