Step |
Hyp |
Ref |
Expression |
1 |
|
arearect.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
arearect.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
arearect.3 |
⊢ 𝐶 ∈ ℝ |
4 |
|
arearect.4 |
⊢ 𝐷 ∈ ℝ |
5 |
|
arearect.5 |
⊢ 𝐴 ≤ 𝐵 |
6 |
|
arearect.6 |
⊢ 𝐶 ≤ 𝐷 |
7 |
|
arearect.7 |
⊢ 𝑆 = ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) |
8 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
9 |
1 2 8
|
mp2an |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ |
10 |
|
iccssre |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
11 |
3 4 10
|
mp2an |
⊢ ( 𝐶 [,] 𝐷 ) ⊆ ℝ |
12 |
|
xpss12 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) → ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) ⊆ ( ℝ × ℝ ) ) |
13 |
9 11 12
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) ⊆ ( ℝ × ℝ ) |
14 |
7 13
|
eqsstri |
⊢ 𝑆 ⊆ ( ℝ × ℝ ) |
15 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) = ( 𝐷 − 𝐶 ) ) |
16 |
7
|
imaeq1i |
⊢ ( 𝑆 “ { 𝑥 } ) = ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) |
17 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) = ( 𝐶 [,] 𝐷 ) ) |
18 |
|
xpimasn |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) = ( 𝐶 [,] 𝐷 ) ) |
19 |
17 18
|
eqtr4d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) = ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) ) |
20 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) = ∅ ) |
21 |
|
disjsn |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
22 |
|
xpima1 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∩ { 𝑥 } ) = ∅ → ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) = ∅ ) |
23 |
21 22
|
sylbir |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) = ∅ ) |
24 |
20 23
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) = ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) ) |
25 |
19 24
|
pm2.61i |
⊢ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) = ( ( ( 𝐴 [,] 𝐵 ) × ( 𝐶 [,] 𝐷 ) ) “ { 𝑥 } ) |
26 |
16 25
|
eqtr4i |
⊢ ( 𝑆 “ { 𝑥 } ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) |
27 |
26
|
fveq2i |
⊢ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( vol ‘ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) ) |
28 |
17
|
fveq2d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) ) = ( vol ‘ ( 𝐶 [,] 𝐷 ) ) ) |
29 |
27 28
|
syl5eq |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( vol ‘ ( 𝐶 [,] 𝐷 ) ) ) |
30 |
|
iccmbl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 [,] 𝐷 ) ∈ dom vol ) |
31 |
3 4 30
|
mp2an |
⊢ ( 𝐶 [,] 𝐷 ) ∈ dom vol |
32 |
|
mblvol |
⊢ ( ( 𝐶 [,] 𝐷 ) ∈ dom vol → ( vol ‘ ( 𝐶 [,] 𝐷 ) ) = ( vol* ‘ ( 𝐶 [,] 𝐷 ) ) ) |
33 |
31 32
|
ax-mp |
⊢ ( vol ‘ ( 𝐶 [,] 𝐷 ) ) = ( vol* ‘ ( 𝐶 [,] 𝐷 ) ) |
34 |
|
ovolicc |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 ≤ 𝐷 ) → ( vol* ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐷 − 𝐶 ) ) |
35 |
3 4 6 34
|
mp3an |
⊢ ( vol* ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐷 − 𝐶 ) |
36 |
33 35
|
eqtri |
⊢ ( vol ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐷 − 𝐶 ) |
37 |
29 36
|
eqtrdi |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( 𝐷 − 𝐶 ) ) |
38 |
15 37
|
eqtr4d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) |
39 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) = 0 ) |
40 |
20
|
fveq2d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) ) = ( vol ‘ ∅ ) ) |
41 |
27 40
|
syl5eq |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( vol ‘ ∅ ) ) |
42 |
|
0mbl |
⊢ ∅ ∈ dom vol |
43 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
44 |
42 43
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
45 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
46 |
44 45
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
47 |
41 46
|
eqtrdi |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
48 |
39 47
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) |
49 |
38 48
|
pm2.61i |
⊢ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) |
50 |
49
|
eqcomi |
⊢ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) |
51 |
50
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) ) |
52 |
4 3
|
resubcli |
⊢ ( 𝐷 − 𝐶 ) ∈ ℝ |
53 |
|
0re |
⊢ 0 ∈ ℝ |
54 |
52 53
|
ifcli |
⊢ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) ∈ ℝ |
55 |
51 54
|
eqeltrdi |
⊢ ( 𝑥 ∈ ℝ → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
56 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
57 |
|
ffun |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → Fun vol ) |
58 |
56 57
|
ax-mp |
⊢ Fun vol |
59 |
31 42
|
ifcli |
⊢ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐶 [,] 𝐷 ) , ∅ ) ∈ dom vol |
60 |
26 59
|
eqeltri |
⊢ ( 𝑆 “ { 𝑥 } ) ∈ dom vol |
61 |
|
fvimacnv |
⊢ ( ( Fun vol ∧ ( 𝑆 “ { 𝑥 } ) ∈ dom vol ) → ( ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ↔ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
62 |
58 60 61
|
mp2an |
⊢ ( ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ↔ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) |
63 |
55 62
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) |
64 |
63
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) |
65 |
9
|
a1i |
⊢ ( 0 ∈ ℝ → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
66 |
|
rembl |
⊢ ℝ ∈ dom vol |
67 |
66
|
a1i |
⊢ ( 0 ∈ ℝ → ℝ ∈ dom vol ) |
68 |
37 52
|
eqeltrdi |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
69 |
68
|
adantl |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
70 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
71 |
70 47
|
syl |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
72 |
71
|
adantl |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
73 |
37
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) |
74 |
52
|
recni |
⊢ ( 𝐷 − 𝐶 ) ∈ ℂ |
75 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
76 |
9 75
|
sstri |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℂ |
77 |
|
ssid |
⊢ ℂ ⊆ ℂ |
78 |
|
cncfmptc |
⊢ ( ( ( 𝐷 − 𝐶 ) ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
79 |
74 76 77 78
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
80 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ 𝐿1 ) |
81 |
1 2 79 80
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ 𝐿1 |
82 |
73 81
|
eqeltri |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 |
83 |
82
|
a1i |
⊢ ( 0 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
84 |
65 67 69 72 83
|
iblss2 |
⊢ ( 0 ∈ ℝ → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
85 |
53 84
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 |
86 |
|
dmarea |
⊢ ( 𝑆 ∈ dom area ↔ ( 𝑆 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
87 |
14 64 85 86
|
mpbir3an |
⊢ 𝑆 ∈ dom area |
88 |
|
areaval |
⊢ ( 𝑆 ∈ dom area → ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ) |
89 |
87 88
|
ax-mp |
⊢ ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 |
90 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) → ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) d 𝑥 ) |
91 |
90 51
|
mprg |
⊢ ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) d 𝑥 |
92 |
|
iccmbl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) |
93 |
1 2 92
|
mp2an |
⊢ ( 𝐴 [,] 𝐵 ) ∈ dom vol |
94 |
|
mblvol |
⊢ ( ( 𝐴 [,] 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
95 |
93 94
|
ax-mp |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) |
96 |
|
ovolicc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
97 |
1 2 5 96
|
mp3an |
⊢ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) |
98 |
95 97
|
eqtri |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) |
99 |
2 1
|
resubcli |
⊢ ( 𝐵 − 𝐴 ) ∈ ℝ |
100 |
98 99
|
eqeltri |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ |
101 |
|
itgconst |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ∧ ( 𝐷 − 𝐶 ) ∈ ℂ ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐷 − 𝐶 ) d 𝑥 = ( ( 𝐷 − 𝐶 ) · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
102 |
93 100 74 101
|
mp3an |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐷 − 𝐶 ) d 𝑥 = ( ( 𝐷 − 𝐶 ) · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
103 |
|
itgss2 |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐷 − 𝐶 ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) d 𝑥 ) |
104 |
9 103
|
ax-mp |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐷 − 𝐶 ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) d 𝑥 |
105 |
98
|
oveq2i |
⊢ ( ( 𝐷 − 𝐶 ) · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( 𝐷 − 𝐶 ) · ( 𝐵 − 𝐴 ) ) |
106 |
102 104 105
|
3eqtr3i |
⊢ ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐷 − 𝐶 ) , 0 ) d 𝑥 = ( ( 𝐷 − 𝐶 ) · ( 𝐵 − 𝐴 ) ) |
107 |
91 106
|
eqtri |
⊢ ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ( ( 𝐷 − 𝐶 ) · ( 𝐵 − 𝐴 ) ) |
108 |
99
|
recni |
⊢ ( 𝐵 − 𝐴 ) ∈ ℂ |
109 |
74 108
|
mulcomi |
⊢ ( ( 𝐷 − 𝐶 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐵 − 𝐴 ) · ( 𝐷 − 𝐶 ) ) |
110 |
89 107 109
|
3eqtri |
⊢ ( area ‘ 𝑆 ) = ( ( 𝐵 − 𝐴 ) · ( 𝐷 − 𝐶 ) ) |