Metamath Proof Explorer


Theorem arearect

Description: The area of a rectangle whose sides are parallel to the coordinate axes in ( RR X. RR ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019)

Ref Expression
Hypotheses arearect.1 A
arearect.2 B
arearect.3 C
arearect.4 D
arearect.5 A B
arearect.6 C D
arearect.7 S = A B × C D
Assertion arearect area S = B A D C

Proof

Step Hyp Ref Expression
1 arearect.1 A
2 arearect.2 B
3 arearect.3 C
4 arearect.4 D
5 arearect.5 A B
6 arearect.6 C D
7 arearect.7 S = A B × C D
8 iccssre A B A B
9 1 2 8 mp2an A B
10 iccssre C D C D
11 3 4 10 mp2an C D
12 xpss12 A B C D A B × C D 2
13 9 11 12 mp2an A B × C D 2
14 7 13 eqsstri S 2
15 iftrue x A B if x A B D C 0 = D C
16 7 imaeq1i S x = A B × C D x
17 iftrue x A B if x A B C D = C D
18 xpimasn x A B A B × C D x = C D
19 17 18 eqtr4d x A B if x A B C D = A B × C D x
20 iffalse ¬ x A B if x A B C D =
21 disjsn A B x = ¬ x A B
22 xpima1 A B x = A B × C D x =
23 21 22 sylbir ¬ x A B A B × C D x =
24 20 23 eqtr4d ¬ x A B if x A B C D = A B × C D x
25 19 24 pm2.61i if x A B C D = A B × C D x
26 16 25 eqtr4i S x = if x A B C D
27 26 fveq2i vol S x = vol if x A B C D
28 17 fveq2d x A B vol if x A B C D = vol C D
29 27 28 syl5eq x A B vol S x = vol C D
30 iccmbl C D C D dom vol
31 3 4 30 mp2an C D dom vol
32 mblvol C D dom vol vol C D = vol * C D
33 31 32 ax-mp vol C D = vol * C D
34 ovolicc C D C D vol * C D = D C
35 3 4 6 34 mp3an vol * C D = D C
36 33 35 eqtri vol C D = D C
37 29 36 eqtrdi x A B vol S x = D C
38 15 37 eqtr4d x A B if x A B D C 0 = vol S x
39 iffalse ¬ x A B if x A B D C 0 = 0
40 20 fveq2d ¬ x A B vol if x A B C D = vol
41 27 40 syl5eq ¬ x A B vol S x = vol
42 0mbl dom vol
43 mblvol dom vol vol = vol *
44 42 43 ax-mp vol = vol *
45 ovol0 vol * = 0
46 44 45 eqtri vol = 0
47 41 46 eqtrdi ¬ x A B vol S x = 0
48 39 47 eqtr4d ¬ x A B if x A B D C 0 = vol S x
49 38 48 pm2.61i if x A B D C 0 = vol S x
50 49 eqcomi vol S x = if x A B D C 0
51 50 a1i x vol S x = if x A B D C 0
52 4 3 resubcli D C
53 0re 0
54 52 53 ifcli if x A B D C 0
55 51 54 eqeltrdi x vol S x
56 volf vol : dom vol 0 +∞
57 ffun vol : dom vol 0 +∞ Fun vol
58 56 57 ax-mp Fun vol
59 31 42 ifcli if x A B C D dom vol
60 26 59 eqeltri S x dom vol
61 fvimacnv Fun vol S x dom vol vol S x S x vol -1
62 58 60 61 mp2an vol S x S x vol -1
63 55 62 sylib x S x vol -1
64 63 rgen x S x vol -1
65 9 a1i 0 A B
66 rembl dom vol
67 66 a1i 0 dom vol
68 37 52 eqeltrdi x A B vol S x
69 68 adantl 0 x A B vol S x
70 eldifn x A B ¬ x A B
71 70 47 syl x A B vol S x = 0
72 71 adantl 0 x A B vol S x = 0
73 37 mpteq2ia x A B vol S x = x A B D C
74 52 recni D C
75 ax-resscn
76 9 75 sstri A B
77 ssid
78 cncfmptc D C A B x A B D C : A B cn
79 74 76 77 78 mp3an x A B D C : A B cn
80 cniccibl A B x A B D C : A B cn x A B D C 𝐿 1
81 1 2 79 80 mp3an x A B D C 𝐿 1
82 73 81 eqeltri x A B vol S x 𝐿 1
83 82 a1i 0 x A B vol S x 𝐿 1
84 65 67 69 72 83 iblss2 0 x vol S x 𝐿 1
85 53 84 ax-mp x vol S x 𝐿 1
86 dmarea S dom area S 2 x S x vol -1 x vol S x 𝐿 1
87 14 64 85 86 mpbir3an S dom area
88 areaval S dom area area S = vol S x dx
89 87 88 ax-mp area S = vol S x dx
90 itgeq2 x vol S x = if x A B D C 0 vol S x dx = if x A B D C 0 dx
91 90 51 mprg vol S x dx = if x A B D C 0 dx
92 iccmbl A B A B dom vol
93 1 2 92 mp2an A B dom vol
94 mblvol A B dom vol vol A B = vol * A B
95 93 94 ax-mp vol A B = vol * A B
96 ovolicc A B A B vol * A B = B A
97 1 2 5 96 mp3an vol * A B = B A
98 95 97 eqtri vol A B = B A
99 2 1 resubcli B A
100 98 99 eqeltri vol A B
101 itgconst A B dom vol vol A B D C A B D C dx = D C vol A B
102 93 100 74 101 mp3an A B D C dx = D C vol A B
103 itgss2 A B A B D C dx = if x A B D C 0 dx
104 9 103 ax-mp A B D C dx = if x A B D C 0 dx
105 98 oveq2i D C vol A B = D C B A
106 102 104 105 3eqtr3i if x A B D C 0 dx = D C B A
107 91 106 eqtri vol S x dx = D C B A
108 99 recni B A
109 74 108 mulcomi D C B A = B A D C
110 89 107 109 3eqtri area S = B A D C