Metamath Proof Explorer


Theorem areaquad

Description: The area of a quadrilateral with two sides which are parallel to the y-axis in ( RR X. RR ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019)

Ref Expression
Hypotheses areaquad.1 A
areaquad.2 B
areaquad.3 C
areaquad.4 D
areaquad.5 E
areaquad.6 F
areaquad.7 A < B
areaquad.8 C E
areaquad.9 D F
areaquad.10 U = C + x A B A D C
areaquad.11 V = E + x A B A F E
areaquad.12 S = x y | x A B y U V
Assertion areaquad area S = F + E 2 D + C 2 B A

Proof

Step Hyp Ref Expression
1 areaquad.1 A
2 areaquad.2 B
3 areaquad.3 C
4 areaquad.4 D
5 areaquad.5 E
6 areaquad.6 F
7 areaquad.7 A < B
8 areaquad.8 C E
9 areaquad.9 D F
10 areaquad.10 U = C + x A B A D C
11 areaquad.11 V = E + x A B A F E
12 areaquad.12 S = x y | x A B y U V
13 iccssre A B A B
14 1 2 13 mp2an A B
15 14 sseli x A B x
16 15 adantr x A B y U V x
17 3 recni C
18 17 a1i x C
19 resubcl x A x A
20 1 19 mpan2 x x A
21 2 1 resubcli B A
22 21 a1i x B A
23 2 recni B
24 23 a1i A B
25 recn A A
26 1 7 gtneii B A
27 26 a1i A B A
28 24 25 27 subne0d A B A 0
29 1 28 ax-mp B A 0
30 29 a1i x B A 0
31 20 22 30 redivcld x x A B A
32 31 recnd x x A B A
33 4 recni D
34 33 a1i x D
35 32 34 mulcld x x A B A D
36 32 18 mulcld x x A B A C
37 18 35 36 addsub12d x C + x A B A D - x A B A C = x A B A D + C - x A B A C
38 32 34 18 subdid x x A B A D C = x A B A D x A B A C
39 38 oveq2d x C + x A B A D C = C + x A B A D - x A B A C
40 10 39 syl5eq x U = C + x A B A D - x A B A C
41 1cnd x 1
42 41 32 18 subdird x 1 x A B A C = 1 C x A B A C
43 17 mulid2i 1 C = C
44 43 oveq1i 1 C x A B A C = C x A B A C
45 42 44 eqtrdi x 1 x A B A C = C x A B A C
46 45 oveq2d x x A B A D + 1 x A B A C = x A B A D + C - x A B A C
47 37 40 46 3eqtr4d x U = x A B A D + 1 x A B A C
48 1red x 1
49 48 31 resubcld x 1 x A B A
50 49 recnd x 1 x A B A
51 50 18 mulcld x 1 x A B A C
52 35 51 addcomd x x A B A D + 1 x A B A C = 1 x A B A C + x A B A D
53 50 18 mulcomd x 1 x A B A C = C 1 x A B A
54 32 34 mulcomd x x A B A D = D x A B A
55 53 54 oveq12d x 1 x A B A C + x A B A D = C 1 x A B A + D x A B A
56 47 52 55 3eqtrd x U = C 1 x A B A + D x A B A
57 3 a1i x C
58 57 49 remulcld x C 1 x A B A
59 4 a1i x D
60 59 31 remulcld x D x A B A
61 58 60 readdcld x C 1 x A B A + D x A B A
62 56 61 eqeltrd x U
63 5 recni E
64 63 a1i x E
65 6 recni F
66 65 a1i x F
67 32 66 mulcld x x A B A F
68 32 64 mulcld x x A B A E
69 64 67 68 addsub12d x E + x A B A F - x A B A E = x A B A F + E - x A B A E
70 32 66 64 subdid x x A B A F E = x A B A F x A B A E
71 70 oveq2d x E + x A B A F E = E + x A B A F - x A B A E
72 11 71 syl5eq x V = E + x A B A F - x A B A E
73 41 32 64 subdird x 1 x A B A E = 1 E x A B A E
74 63 mulid2i 1 E = E
75 74 oveq1i 1 E x A B A E = E x A B A E
76 73 75 eqtrdi x 1 x A B A E = E x A B A E
77 76 oveq2d x x A B A F + 1 x A B A E = x A B A F + E - x A B A E
78 69 72 77 3eqtr4d x V = x A B A F + 1 x A B A E
79 50 64 mulcld x 1 x A B A E
80 67 79 addcomd x x A B A F + 1 x A B A E = 1 x A B A E + x A B A F
81 50 64 mulcomd x 1 x A B A E = E 1 x A B A
82 32 66 mulcomd x x A B A F = F x A B A
83 81 82 oveq12d x 1 x A B A E + x A B A F = E 1 x A B A + F x A B A
84 78 80 83 3eqtrd x V = E 1 x A B A + F x A B A
85 5 a1i x E
86 85 49 remulcld x E 1 x A B A
87 6 a1i x F
88 87 31 remulcld x F x A B A
89 86 88 readdcld x E 1 x A B A + F x A B A
90 84 89 eqeltrd x V
91 iccssre U V U V
92 62 90 91 syl2anc x U V
93 15 92 syl x A B U V
94 93 sselda x A B y U V y
95 16 94 jca x A B y U V x y
96 95 ssopab2i x y | x A B y U V x y | x y
97 df-xp 2 = x y | x y
98 96 12 97 3sstr4i S 2
99 iftrue x A B if x A B V U 0 = V U
100 nfv y x A B
101 nfopab2 _ y x y | x A B y U V
102 12 101 nfcxfr _ y S
103 nfcv _ y x
104 102 103 nfima _ y S x
105 nfcv _ y U V
106 vex x V
107 vex y V
108 106 107 elimasn y S x x y S
109 12 eleq2i x y S x y x y | x A B y U V
110 opabidw x y x y | x A B y U V x A B y U V
111 108 109 110 3bitri y S x x A B y U V
112 111 baib x A B y S x y U V
113 100 104 105 112 eqrd x A B S x = U V
114 113 fveq2d x A B vol S x = vol U V
115 15 62 syl x A B U
116 15 90 syl x A B V
117 iccmbl U V U V dom vol
118 115 116 117 syl2anc x A B U V dom vol
119 mblvol U V dom vol vol U V = vol * U V
120 118 119 syl x A B vol U V = vol * U V
121 15 58 syl x A B C 1 x A B A
122 15 60 syl x A B D x A B A
123 15 86 syl x A B E 1 x A B A
124 15 88 syl x A B F x A B A
125 3 a1i x A B C
126 5 a1i x A B E
127 15 49 syl x A B 1 x A B A
128 15 31 syl x A B x A B A
129 128 recnd x A B x A B A
130 129 subidd x A B x A B A x A B A = 0
131 1red x A B 1
132 2 a1i x A B B
133 1 a1i x A B A
134 1 rexri A *
135 2 rexri B *
136 iccleub A * B * x A B x B
137 134 135 136 mp3an12 x A B x B
138 15 132 133 137 lesub1dd x A B x A B A
139 15 1 19 sylancl x A B x A
140 21 a1i x A B B A
141 1 recni A
142 141 subidi A A = 0
143 133 132 133 ltsub1d x A B A < B A A < B A
144 7 143 mpbii x A B A A < B A
145 142 144 eqbrtrrid x A B 0 < B A
146 lediv1 x A B A B A 0 < B A x A B A x A B A B A B A
147 139 140 140 145 146 syl112anc x A B x A B A x A B A B A B A
148 138 147 mpbid x A B x A B A B A B A
149 21 recni B A
150 149 29 dividi B A B A = 1
151 148 150 breqtrdi x A B x A B A 1
152 128 131 128 151 lesub1dd x A B x A B A x A B A 1 x A B A
153 130 152 eqbrtrrd x A B 0 1 x A B A
154 8 a1i x A B C E
155 125 126 127 153 154 lemul1ad x A B C 1 x A B A E 1 x A B A
156 4 a1i x A B D
157 6 a1i x A B F
158 140 145 elrpd x A B B A +
159 iccgelb A * B * x A B A x
160 134 135 159 mp3an12 x A B A x
161 133 15 133 160 lesub1dd x A B A A x A
162 142 161 eqbrtrrid x A B 0 x A
163 139 158 162 divge0d x A B 0 x A B A
164 9 a1i x A B D F
165 156 157 128 163 164 lemul1ad x A B D x A B A F x A B A
166 121 122 123 124 155 165 le2addd x A B C 1 x A B A + D x A B A E 1 x A B A + F x A B A
167 15 56 syl x A B U = C 1 x A B A + D x A B A
168 15 84 syl x A B V = E 1 x A B A + F x A B A
169 166 167 168 3brtr4d x A B U V
170 ovolicc U V U V vol * U V = V U
171 115 116 169 170 syl3anc x A B vol * U V = V U
172 114 120 171 3eqtrd x A B vol S x = V U
173 99 172 eqtr4d x A B if x A B V U 0 = vol S x
174 iffalse ¬ x A B if x A B V U 0 = 0
175 nfv y ¬ x A B
176 nfcv _ y
177 111 simplbi y S x x A B
178 noel ¬ y
179 178 pm2.21i y x A B
180 177 179 pm5.21ni ¬ x A B y S x y
181 175 104 176 180 eqrd ¬ x A B S x =
182 181 fveq2d ¬ x A B vol S x = vol
183 0mbl dom vol
184 mblvol dom vol vol = vol *
185 183 184 ax-mp vol = vol *
186 ovol0 vol * = 0
187 185 186 eqtri vol = 0
188 182 187 eqtrdi ¬ x A B vol S x = 0
189 174 188 eqtr4d ¬ x A B if x A B V U 0 = vol S x
190 173 189 pm2.61i if x A B V U 0 = vol S x
191 190 eqcomi vol S x = if x A B V U 0
192 90 62 resubcld x V U
193 0re 0
194 ifcl V U 0 if x A B V U 0
195 192 193 194 sylancl x if x A B V U 0
196 191 195 eqeltrid x vol S x
197 volf vol : dom vol 0 +∞
198 ffun vol : dom vol 0 +∞ Fun vol
199 197 198 ax-mp Fun vol
200 iftrue x A B if x A B U V = U V
201 113 200 eqtr4d x A B S x = if x A B U V
202 iffalse ¬ x A B if x A B U V =
203 181 202 eqtr4d ¬ x A B S x = if x A B U V
204 201 203 pm2.61i S x = if x A B U V
205 62 90 117 syl2anc x U V dom vol
206 183 a1i x dom vol
207 205 206 ifcld x if x A B U V dom vol
208 204 207 eqeltrid x S x dom vol
209 fvimacnv Fun vol S x dom vol vol S x S x vol -1
210 199 208 209 sylancr x vol S x S x vol -1
211 196 210 mpbid x S x vol -1
212 211 rgen x S x vol -1
213 14 a1i 0 A B
214 rembl dom vol
215 214 a1i 0 dom vol
216 116 115 resubcld x A B V U
217 172 216 eqeltrd x A B vol S x
218 217 adantl 0 x A B vol S x
219 eldifn x A B ¬ x A B
220 219 188 syl x A B vol S x = 0
221 220 adantl 0 x A B vol S x = 0
222 172 mpteq2ia x A B vol S x = x A B V U
223 eqid TopOpen fld = TopOpen fld
224 223 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
225 224 a1i TopOpen fld × t TopOpen fld Cn TopOpen fld
226 11 mpteq2i x A B V = x A B E + x A B A F E
227 223 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
228 227 a1i + TopOpen fld × t TopOpen fld Cn TopOpen fld
229 ax-resscn
230 14 229 sstri A B
231 ssid
232 cncfmptc E A B x A B E : A B cn
233 63 230 231 232 mp3an x A B E : A B cn
234 233 a1i x A B E : A B cn
235 230 sseli x A B x
236 141 a1i x A B A
237 149 a1i x A B B A
238 29 a1i x A B B A 0
239 235 236 237 238 divsubdird x A B x A B A = x B A A B A
240 239 adantl x A B x A B A = x B A A B A
241 240 mpteq2dva x A B x A B A = x A B x B A A B A
242 resmpt A B x x B A A B = x A B x B A
243 230 242 ax-mp x x B A A B = x A B x B A
244 eqid x x B A = x x B A
245 244 divccncf B A B A 0 x x B A : cn
246 149 29 245 mp2an x x B A : cn
247 rescncf A B x x B A : cn x x B A A B : A B cn
248 230 246 247 mp2 x x B A A B : A B cn
249 243 248 eqeltrri x A B x B A : A B cn
250 249 a1i x A B x B A : A B cn
251 141 149 29 divcli A B A
252 cncfmptc A B A A B x A B A B A : A B cn
253 251 230 231 252 mp3an x A B A B A : A B cn
254 253 a1i x A B A B A : A B cn
255 223 225 250 254 cncfmpt2f x A B x B A A B A : A B cn
256 241 255 eqeltrd x A B x A B A : A B cn
257 cncfmptc F A B x A B F : A B cn
258 65 230 231 257 mp3an x A B F : A B cn
259 258 a1i x A B F : A B cn
260 223 225 259 234 cncfmpt2f x A B F E : A B cn
261 256 260 mulcncf x A B x A B A F E : A B cn
262 223 228 234 261 cncfmpt2f x A B E + x A B A F E : A B cn
263 226 262 eqeltrid x A B V : A B cn
264 10 mpteq2i x A B U = x A B C + x A B A D C
265 cncfmptc C A B x A B C : A B cn
266 17 230 231 265 mp3an x A B C : A B cn
267 266 a1i x A B C : A B cn
268 cncfmptc D A B x A B D : A B cn
269 33 230 231 268 mp3an x A B D : A B cn
270 269 a1i x A B D : A B cn
271 223 225 270 267 cncfmpt2f x A B D C : A B cn
272 256 271 mulcncf x A B x A B A D C : A B cn
273 223 228 267 272 cncfmpt2f x A B C + x A B A D C : A B cn
274 264 273 eqeltrid x A B U : A B cn
275 223 225 263 274 cncfmpt2f x A B V U : A B cn
276 275 mptru x A B V U : A B cn
277 cniccibl A B x A B V U : A B cn x A B V U 𝐿 1
278 1 2 276 277 mp3an x A B V U 𝐿 1
279 222 278 eqeltri x A B vol S x 𝐿 1
280 279 a1i 0 x A B vol S x 𝐿 1
281 213 215 218 221 280 iblss2 0 x vol S x 𝐿 1
282 193 281 ax-mp x vol S x 𝐿 1
283 dmarea S dom area S 2 x S x vol -1 x vol S x 𝐿 1
284 98 212 282 283 mpbir3an S dom area
285 areaval S dom area area S = vol S x dx
286 284 285 ax-mp area S = vol S x dx
287 itgeq2 x vol S x = if x A B V U 0 vol S x dx = if x A B V U 0 dx
288 191 a1i x vol S x = if x A B V U 0
289 287 288 mprg vol S x dx = if x A B V U 0 dx
290 itgss2 A B A B V U dx = if x A B V U 0 dx
291 14 290 ax-mp A B V U dx = if x A B V U 0 dx
292 65 63 addcli F + E
293 2cnne0 2 2 0
294 div32 F + E 2 2 0 B A F + E 2 B A = F + E B A 2
295 292 293 149 294 mp3an F + E 2 B A = F + E B A 2
296 33 17 addcli D + C
297 div32 D + C 2 2 0 B A D + C 2 B A = D + C B A 2
298 296 293 149 297 mp3an D + C 2 B A = D + C B A 2
299 295 298 oveq12i F + E 2 B A D + C 2 B A = F + E B A 2 D + C B A 2
300 2cn 2
301 2ne0 2 0
302 292 300 301 divcli F + E 2
303 296 300 301 divcli D + C 2
304 302 303 149 subdiri F + E 2 D + C 2 B A = F + E 2 B A D + C 2 B A
305 116 adantl x A B V
306 263 mptru x A B V : A B cn
307 cniccibl A B x A B V : A B cn x A B V 𝐿 1
308 1 2 306 307 mp3an x A B V 𝐿 1
309 308 a1i x A B V 𝐿 1
310 115 adantl x A B U
311 274 mptru x A B U : A B cn
312 cniccibl A B x A B U : A B cn x A B U 𝐿 1
313 1 2 311 312 mp3an x A B U 𝐿 1
314 313 a1i x A B U 𝐿 1
315 305 309 310 314 itgsub A B V U dx = A B V dx A B U dx
316 315 mptru A B V U dx = A B V dx A B U dx
317 63 300 301 divcan4i E 2 2 = E
318 317 oveq1i E 2 2 B A = E B A
319 63 300 mulcli E 2
320 div32 E 2 2 2 0 B A E 2 2 B A = E 2 B A 2
321 319 293 149 320 mp3an E 2 2 B A = E 2 B A 2
322 318 321 eqtr3i E B A = E 2 B A 2
323 322 oveq1i E B A + F E B A 2 = E 2 B A 2 + F E B A 2
324 itgeq2 x A B V = E + x A B A F E A B V dx = A B E + x A B A F E dx
325 11 a1i x A B V = E + x A B A F E
326 324 325 mprg A B V dx = A B E + x A B A F E dx
327 5 a1i x A B E
328 cniccibl A B x A B E : A B cn x A B E 𝐿 1
329 1 2 233 328 mp3an x A B E 𝐿 1
330 329 a1i x A B E 𝐿 1
331 128 adantl x A B x A B A
332 6 a1i x A B F
333 332 327 resubcld x A B F E
334 331 333 remulcld x A B x A B A F E
335 261 mptru x A B x A B A F E : A B cn
336 cniccibl A B x A B x A B A F E : A B cn x A B x A B A F E 𝐿 1
337 1 2 335 336 mp3an x A B x A B A F E 𝐿 1
338 337 a1i x A B x A B A F E 𝐿 1
339 327 330 334 338 itgadd A B E + x A B A F E dx = A B E dx + A B x A B A F E dx
340 339 mptru A B E + x A B A F E dx = A B E dx + A B x A B A F E dx
341 iccmbl A B A B dom vol
342 1 2 341 mp2an A B dom vol
343 mblvol A B dom vol vol A B = vol * A B
344 342 343 ax-mp vol A B = vol * A B
345 1 2 7 ltleii A B
346 ovolicc A B A B vol * A B = B A
347 1 2 345 346 mp3an vol * A B = B A
348 344 347 eqtri vol A B = B A
349 348 21 eqeltri vol A B
350 itgconst A B dom vol vol A B E A B E dx = E vol A B
351 342 349 63 350 mp3an A B E dx = E vol A B
352 348 oveq2i E vol A B = E B A
353 351 352 eqtri A B E dx = E B A
354 65 a1i F
355 63 a1i E
356 354 355 subcld F E
357 256 mptru x A B x A B A : A B cn
358 cniccibl A B x A B x A B A : A B cn x A B x A B A 𝐿 1
359 1 2 357 358 mp3an x A B x A B A 𝐿 1
360 359 a1i x A B x A B A 𝐿 1
361 356 331 360 itgmulc2 F E A B x A B A dx = A B F E x A B A dx
362 361 mptru F E A B x A B A dx = A B F E x A B A dx
363 itgeq2 x A B x A B A = 1 B A x A A B x A B A dx = A B 1 B A x A dx
364 139 recnd x A B x A
365 364 237 238 divrec2d x A B x A B A = 1 B A x A
366 363 365 mprg A B x A B A dx = A B 1 B A x A dx
367 15 adantl x A B x
368 cncfmptid A B x A B x : A B cn
369 230 231 368 mp2an x A B x : A B cn
370 cniccibl A B x A B x : A B cn x A B x 𝐿 1
371 1 2 369 370 mp3an x A B x 𝐿 1
372 371 a1i x A B x 𝐿 1
373 1 a1i x A B A
374 cncfmptc A A B x A B A : A B cn
375 141 230 231 374 mp3an x A B A : A B cn
376 cniccibl A B x A B A : A B cn x A B A 𝐿 1
377 1 2 375 376 mp3an x A B A 𝐿 1
378 377 a1i x A B A 𝐿 1
379 367 372 373 378 itgsub A B x A dx = A B x dx A B A dx
380 379 mptru A B x A dx = A B x dx A B A dx
381 1 a1i A
382 2 a1i B
383 345 a1i A B
384 1nn0 1 0
385 384 a1i 1 0
386 381 382 383 385 itgpowd A B x 1 dx = B 1 + 1 A 1 + 1 1 + 1
387 386 mptru A B x 1 dx = B 1 + 1 A 1 + 1 1 + 1
388 1p1e2 1 + 1 = 2
389 388 oveq2i B 1 + 1 A 1 + 1 1 + 1 = B 1 + 1 A 1 + 1 2
390 387 389 eqtri A B x 1 dx = B 1 + 1 A 1 + 1 2
391 itgeq2 x A B x 1 = x A B x 1 dx = A B x dx
392 235 exp1d x A B x 1 = x
393 391 392 mprg A B x 1 dx = A B x dx
394 388 oveq2i B 1 + 1 = B 2
395 388 oveq2i A 1 + 1 = A 2
396 394 395 oveq12i B 1 + 1 A 1 + 1 = B 2 A 2
397 396 oveq1i B 1 + 1 A 1 + 1 2 = B 2 A 2 2
398 390 393 397 3eqtr3i A B x dx = B 2 A 2 2
399 itgconst A B dom vol vol A B A A B A dx = A vol A B
400 342 349 141 399 mp3an A B A dx = A vol A B
401 348 oveq2i A vol A B = A B A
402 400 401 eqtri A B A dx = A B A
403 398 402 oveq12i A B x dx A B A dx = B 2 A 2 2 A B A
404 380 403 eqtri A B x A dx = B 2 A 2 2 A B A
405 404 oveq2i 1 B A A B x A dx = 1 B A B 2 A 2 2 A B A
406 23 a1i B
407 141 a1i A
408 406 407 subcld B A
409 26 a1i B A
410 406 407 409 subne0d B A 0
411 408 410 reccld 1 B A
412 411 mptru 1 B A
413 23 sqcli B 2
414 141 sqcli A 2
415 413 414 subcli B 2 A 2
416 415 300 301 divcli B 2 A 2 2
417 141 149 mulcli A B A
418 412 416 417 subdii 1 B A B 2 A 2 2 A B A = 1 B A B 2 A 2 2 1 B A A B A
419 405 418 eqtri 1 B A A B x A dx = 1 B A B 2 A 2 2 1 B A A B A
420 139 adantl x A B x A
421 367 372 373 378 iblsub x A B x A 𝐿 1
422 411 420 421 itgmulc2 1 B A A B x A dx = A B 1 B A x A dx
423 422 mptru 1 B A A B x A dx = A B 1 B A x A dx
424 412 417 mulcomi 1 B A A B A = A B A 1 B A
425 417 149 29 divreci A B A B A = A B A 1 B A
426 141 149 29 divcan4i A B A B A = A
427 424 425 426 3eqtr2i 1 B A A B A = A
428 427 oveq2i 1 B A B 2 A 2 2 1 B A A B A = 1 B A B 2 A 2 2 A
429 419 423 428 3eqtr3i A B 1 B A x A dx = 1 B A B 2 A 2 2 A
430 366 429 eqtri A B x A B A dx = 1 B A B 2 A 2 2 A
431 23 141 subsqi B 2 A 2 = B + A B A
432 431 oveq1i B 2 A 2 2 = B + A B A 2
433 432 oveq2i 1 B A B 2 A 2 2 = 1 B A B + A B A 2
434 431 415 eqeltrri B + A B A
435 412 434 300 301 divassi 1 B A B + A B A 2 = 1 B A B + A B A 2
436 412 434 mulcomi 1 B A B + A B A = B + A B A 1 B A
437 434 149 29 divreci B + A B A B A = B + A B A 1 B A
438 23 141 addcli B + A
439 438 149 29 divcan4i B + A B A B A = B + A
440 436 437 439 3eqtr2i 1 B A B + A B A = B + A
441 440 oveq1i 1 B A B + A B A 2 = B + A 2
442 433 435 441 3eqtr2i 1 B A B 2 A 2 2 = B + A 2
443 442 oveq1i 1 B A B 2 A 2 2 A = B + A 2 A
444 141 300 mulcli A 2
445 divsubdir B + A A 2 2 2 0 B + A - A 2 2 = B + A 2 A 2 2
446 438 444 293 445 mp3an B + A - A 2 2 = B + A 2 A 2 2
447 23 141 444 addsubassi B + A - A 2 = B + A - A 2
448 subsub2 B A 2 A B A 2 A = B + A - A 2
449 23 444 141 448 mp3an B A 2 A = B + A - A 2
450 141 times2i A 2 = A + A
451 450 oveq1i A 2 A = A + A - A
452 141 141 pncan3oi A + A - A = A
453 451 452 eqtri A 2 A = A
454 453 oveq2i B A 2 A = B A
455 447 449 454 3eqtr2i B + A - A 2 = B A
456 455 oveq1i B + A - A 2 2 = B A 2
457 141 300 301 divcan4i A 2 2 = A
458 457 oveq2i B + A 2 A 2 2 = B + A 2 A
459 446 456 458 3eqtr3ri B + A 2 A = B A 2
460 430 443 459 3eqtri A B x A B A dx = B A 2
461 460 oveq2i F E A B x A B A dx = F E B A 2
462 itgeq2 x A B F E x A B A = x A B A F E A B F E x A B A dx = A B x A B A F E dx
463 65 63 subcli F E
464 463 a1i x A B F E
465 464 129 mulcomd x A B F E x A B A = x A B A F E
466 462 465 mprg A B F E x A B A dx = A B x A B A F E dx
467 362 461 466 3eqtr3ri A B x A B A F E dx = F E B A 2
468 353 467 oveq12i A B E dx + A B x A B A F E dx = E B A + F E B A 2
469 326 340 468 3eqtri A B V dx = E B A + F E B A 2
470 149 300 301 divcli B A 2
471 319 463 470 adddiri E 2 + F - E B A 2 = E 2 B A 2 + F E B A 2
472 323 469 471 3eqtr4i A B V dx = E 2 + F - E B A 2
473 addsub12 F E 2 E F + E 2 - E = E 2 + F - E
474 65 319 63 473 mp3an F + E 2 - E = E 2 + F - E
475 63 times2i E 2 = E + E
476 475 oveq1i E 2 E = E + E - E
477 63 63 pncan3oi E + E - E = E
478 476 477 eqtri E 2 E = E
479 478 oveq2i F + E 2 - E = F + E
480 474 479 eqtr3i E 2 + F - E = F + E
481 480 oveq1i E 2 + F - E B A 2 = F + E B A 2
482 472 481 eqtri A B V dx = F + E B A 2
483 17 300 301 divcan4i C 2 2 = C
484 483 oveq1i C 2 2 B A = C B A
485 17 300 mulcli C 2
486 div32 C 2 2 2 0 B A C 2 2 B A = C 2 B A 2
487 485 293 149 486 mp3an C 2 2 B A = C 2 B A 2
488 484 487 eqtr3i C B A = C 2 B A 2
489 488 oveq1i C B A + D C B A 2 = C 2 B A 2 + D C B A 2
490 10 a1i x A B U = C + x A B A D C
491 490 itgeq2dv A B U dx = A B C + x A B A D C dx
492 491 mptru A B U dx = A B C + x A B A D C dx
493 3 a1i x A B C
494 cniccibl A B x A B C : A B cn x A B C 𝐿 1
495 1 2 266 494 mp3an x A B C 𝐿 1
496 495 a1i x A B C 𝐿 1
497 4 a1i x A B D
498 497 493 resubcld x A B D C
499 331 498 remulcld x A B x A B A D C
500 272 mptru x A B x A B A D C : A B cn
501 cniccibl A B x A B x A B A D C : A B cn x A B x A B A D C 𝐿 1
502 1 2 500 501 mp3an x A B x A B A D C 𝐿 1
503 502 a1i x A B x A B A D C 𝐿 1
504 493 496 499 503 itgadd A B C + x A B A D C dx = A B C dx + A B x A B A D C dx
505 504 mptru A B C + x A B A D C dx = A B C dx + A B x A B A D C dx
506 itgconst A B dom vol vol A B C A B C dx = C vol A B
507 342 349 17 506 mp3an A B C dx = C vol A B
508 348 oveq2i C vol A B = C B A
509 507 508 eqtri A B C dx = C B A
510 33 a1i D
511 17 a1i C
512 510 511 subcld D C
513 512 331 360 itgmulc2 D C A B x A B A dx = A B D C x A B A dx
514 513 mptru D C A B x A B A dx = A B D C x A B A dx
515 460 oveq2i D C A B x A B A dx = D C B A 2
516 itgeq2 x A B D C x A B A = x A B A D C A B D C x A B A dx = A B x A B A D C dx
517 33 17 subcli D C
518 517 a1i x A B D C
519 518 129 mulcomd x A B D C x A B A = x A B A D C
520 516 519 mprg A B D C x A B A dx = A B x A B A D C dx
521 514 515 520 3eqtr3ri A B x A B A D C dx = D C B A 2
522 509 521 oveq12i A B C dx + A B x A B A D C dx = C B A + D C B A 2
523 492 505 522 3eqtri A B U dx = C B A + D C B A 2
524 485 517 470 adddiri C 2 + D - C B A 2 = C 2 B A 2 + D C B A 2
525 489 523 524 3eqtr4i A B U dx = C 2 + D - C B A 2
526 addsub12 D C 2 C D + C 2 - C = C 2 + D - C
527 33 485 17 526 mp3an D + C 2 - C = C 2 + D - C
528 17 times2i C 2 = C + C
529 528 oveq1i C 2 C = C + C - C
530 17 17 pncan3oi C + C - C = C
531 529 530 eqtri C 2 C = C
532 531 oveq2i D + C 2 - C = D + C
533 527 532 eqtr3i C 2 + D - C = D + C
534 533 oveq1i C 2 + D - C B A 2 = D + C B A 2
535 525 534 eqtri A B U dx = D + C B A 2
536 482 535 oveq12i A B V dx A B U dx = F + E B A 2 D + C B A 2
537 316 536 eqtri A B V U dx = F + E B A 2 D + C B A 2
538 299 304 537 3eqtr4ri A B V U dx = F + E 2 D + C 2 B A
539 289 291 538 3eqtr2i vol S x dx = F + E 2 D + C 2 B A
540 286 539 eqtri area S = F + E 2 D + C 2 B A