| Step |
Hyp |
Ref |
Expression |
| 1 |
|
areaquad.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
areaquad.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
areaquad.3 |
⊢ 𝐶 ∈ ℝ |
| 4 |
|
areaquad.4 |
⊢ 𝐷 ∈ ℝ |
| 5 |
|
areaquad.5 |
⊢ 𝐸 ∈ ℝ |
| 6 |
|
areaquad.6 |
⊢ 𝐹 ∈ ℝ |
| 7 |
|
areaquad.7 |
⊢ 𝐴 < 𝐵 |
| 8 |
|
areaquad.8 |
⊢ 𝐶 ≤ 𝐸 |
| 9 |
|
areaquad.9 |
⊢ 𝐷 ≤ 𝐹 |
| 10 |
|
areaquad.10 |
⊢ 𝑈 = ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 11 |
|
areaquad.11 |
⊢ 𝑉 = ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) |
| 12 |
|
areaquad.12 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) } |
| 13 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 14 |
1 2 13
|
mp2an |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ |
| 15 |
14
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) → 𝑥 ∈ ℝ ) |
| 17 |
3
|
recni |
⊢ 𝐶 ∈ ℂ |
| 18 |
17
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐶 ∈ ℂ ) |
| 19 |
|
resubcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 − 𝐴 ) ∈ ℝ ) |
| 20 |
1 19
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 𝐴 ) ∈ ℝ ) |
| 21 |
2 1
|
resubcli |
⊢ ( 𝐵 − 𝐴 ) ∈ ℝ |
| 22 |
21
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 23 |
2
|
recni |
⊢ 𝐵 ∈ ℂ |
| 24 |
23
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 25 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 26 |
1 7
|
gtneii |
⊢ 𝐵 ≠ 𝐴 |
| 27 |
26
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 𝐵 ≠ 𝐴 ) |
| 28 |
24 25 27
|
subne0d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 29 |
1 28
|
ax-mp |
⊢ ( 𝐵 − 𝐴 ) ≠ 0 |
| 30 |
29
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 31 |
20 22 30
|
redivcld |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 33 |
4
|
recni |
⊢ 𝐷 ∈ ℂ |
| 34 |
33
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐷 ∈ ℂ ) |
| 35 |
32 34
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) ∈ ℂ ) |
| 36 |
32 18
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ∈ ℂ ) |
| 37 |
18 35 36
|
addsub12d |
⊢ ( 𝑥 ∈ ℝ → ( 𝐶 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) + ( 𝐶 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) ) |
| 38 |
32 34 18
|
subdid |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) = ( 𝐶 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) ) |
| 40 |
10 39
|
eqtrid |
⊢ ( 𝑥 ∈ ℝ → 𝑈 = ( 𝐶 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) ) |
| 41 |
|
1cnd |
⊢ ( 𝑥 ∈ ℝ → 1 ∈ ℂ ) |
| 42 |
41 32 18
|
subdird |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) = ( ( 1 · 𝐶 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) |
| 43 |
17
|
mullidi |
⊢ ( 1 · 𝐶 ) = 𝐶 |
| 44 |
43
|
oveq1i |
⊢ ( ( 1 · 𝐶 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) = ( 𝐶 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) |
| 45 |
42 44
|
eqtrdi |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) = ( 𝐶 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) + ( 𝐶 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐶 ) ) ) ) |
| 47 |
37 40 46
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ → 𝑈 = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) ) ) |
| 48 |
|
1red |
⊢ ( 𝑥 ∈ ℝ → 1 ∈ ℝ ) |
| 49 |
48 31
|
resubcld |
⊢ ( 𝑥 ∈ ℝ → ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 50 |
49
|
recnd |
⊢ ( 𝑥 ∈ ℝ → ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℂ ) |
| 51 |
50 18
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) ∈ ℂ ) |
| 52 |
35 51
|
addcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) ) = ( ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) ) ) |
| 53 |
50 18
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) = ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 54 |
32 34
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) = ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 55 |
53 54
|
oveq12d |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐶 ) + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐷 ) ) = ( ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 56 |
47 52 55
|
3eqtrd |
⊢ ( 𝑥 ∈ ℝ → 𝑈 = ( ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 57 |
3
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐶 ∈ ℝ ) |
| 58 |
57 49
|
remulcld |
⊢ ( 𝑥 ∈ ℝ → ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 59 |
4
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐷 ∈ ℝ ) |
| 60 |
59 31
|
remulcld |
⊢ ( 𝑥 ∈ ℝ → ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 61 |
58 60
|
readdcld |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 62 |
56 61
|
eqeltrd |
⊢ ( 𝑥 ∈ ℝ → 𝑈 ∈ ℝ ) |
| 63 |
5
|
recni |
⊢ 𝐸 ∈ ℂ |
| 64 |
63
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐸 ∈ ℂ ) |
| 65 |
6
|
recni |
⊢ 𝐹 ∈ ℂ |
| 66 |
65
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐹 ∈ ℂ ) |
| 67 |
32 66
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) ∈ ℂ ) |
| 68 |
32 64
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ∈ ℂ ) |
| 69 |
64 67 68
|
addsub12d |
⊢ ( 𝑥 ∈ ℝ → ( 𝐸 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) + ( 𝐸 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) ) |
| 70 |
32 66 64
|
subdid |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) = ( 𝐸 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) ) |
| 72 |
11 71
|
eqtrid |
⊢ ( 𝑥 ∈ ℝ → 𝑉 = ( 𝐸 + ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) ) |
| 73 |
41 32 64
|
subdird |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) = ( ( 1 · 𝐸 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) |
| 74 |
63
|
mullidi |
⊢ ( 1 · 𝐸 ) = 𝐸 |
| 75 |
74
|
oveq1i |
⊢ ( ( 1 · 𝐸 ) − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) = ( 𝐸 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) |
| 76 |
73 75
|
eqtrdi |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) = ( 𝐸 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ → ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) ) = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) + ( 𝐸 − ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐸 ) ) ) ) |
| 78 |
69 72 77
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ → 𝑉 = ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) ) ) |
| 79 |
50 64
|
mulcld |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) ∈ ℂ ) |
| 80 |
67 79
|
addcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) + ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) ) = ( ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) ) ) |
| 81 |
50 64
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) = ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 82 |
32 66
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) = ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 83 |
81 82
|
oveq12d |
⊢ ( 𝑥 ∈ ℝ → ( ( ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) · 𝐸 ) + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · 𝐹 ) ) = ( ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 84 |
78 80 83
|
3eqtrd |
⊢ ( 𝑥 ∈ ℝ → 𝑉 = ( ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 85 |
5
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐸 ∈ ℝ ) |
| 86 |
85 49
|
remulcld |
⊢ ( 𝑥 ∈ ℝ → ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 87 |
6
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 𝐹 ∈ ℝ ) |
| 88 |
87 31
|
remulcld |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 89 |
86 88
|
readdcld |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 90 |
84 89
|
eqeltrd |
⊢ ( 𝑥 ∈ ℝ → 𝑉 ∈ ℝ ) |
| 91 |
|
iccssre |
⊢ ( ( 𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑈 [,] 𝑉 ) ⊆ ℝ ) |
| 92 |
62 90 91
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ → ( 𝑈 [,] 𝑉 ) ⊆ ℝ ) |
| 93 |
15 92
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑈 [,] 𝑉 ) ⊆ ℝ ) |
| 94 |
93
|
sselda |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) → 𝑦 ∈ ℝ ) |
| 95 |
16 94
|
jca |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 96 |
95
|
ssopab2i |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) } |
| 97 |
|
df-xp |
⊢ ( ℝ × ℝ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) } |
| 98 |
96 12 97
|
3sstr4i |
⊢ 𝑆 ⊆ ( ℝ × ℝ ) |
| 99 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) = ( 𝑉 − 𝑈 ) ) |
| 100 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ ( 𝐴 [,] 𝐵 ) |
| 101 |
|
nfopab2 |
⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) } |
| 102 |
12 101
|
nfcxfr |
⊢ Ⅎ 𝑦 𝑆 |
| 103 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑥 } |
| 104 |
102 103
|
nfima |
⊢ Ⅎ 𝑦 ( 𝑆 “ { 𝑥 } ) |
| 105 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑈 [,] 𝑉 ) |
| 106 |
|
vex |
⊢ 𝑥 ∈ V |
| 107 |
|
vex |
⊢ 𝑦 ∈ V |
| 108 |
106 107
|
elimasn |
⊢ ( 𝑦 ∈ ( 𝑆 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) |
| 109 |
12
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) } ) |
| 110 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) } ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) ) |
| 111 |
108 109 110
|
3bitri |
⊢ ( 𝑦 ∈ ( 𝑆 “ { 𝑥 } ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) ) |
| 112 |
111
|
baib |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ( 𝑆 “ { 𝑥 } ) ↔ 𝑦 ∈ ( 𝑈 [,] 𝑉 ) ) ) |
| 113 |
100 104 105 112
|
eqrd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑆 “ { 𝑥 } ) = ( 𝑈 [,] 𝑉 ) ) |
| 114 |
113
|
fveq2d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( vol ‘ ( 𝑈 [,] 𝑉 ) ) ) |
| 115 |
15 62
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑈 ∈ ℝ ) |
| 116 |
15 90
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑉 ∈ ℝ ) |
| 117 |
|
iccmbl |
⊢ ( ( 𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑈 [,] 𝑉 ) ∈ dom vol ) |
| 118 |
115 116 117
|
syl2anc |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑈 [,] 𝑉 ) ∈ dom vol ) |
| 119 |
|
mblvol |
⊢ ( ( 𝑈 [,] 𝑉 ) ∈ dom vol → ( vol ‘ ( 𝑈 [,] 𝑉 ) ) = ( vol* ‘ ( 𝑈 [,] 𝑉 ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑈 [,] 𝑉 ) ) = ( vol* ‘ ( 𝑈 [,] 𝑉 ) ) ) |
| 121 |
15 58
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 122 |
15 60
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 123 |
15 86
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ∈ ℝ ) |
| 124 |
15 88
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 125 |
3
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ ) |
| 126 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐸 ∈ ℝ ) |
| 127 |
15 49
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 128 |
15 31
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 129 |
128
|
recnd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 130 |
129
|
subidd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = 0 ) |
| 131 |
|
1red |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 1 ∈ ℝ ) |
| 132 |
2
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐵 ∈ ℝ ) |
| 133 |
1
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ∈ ℝ ) |
| 134 |
1
|
rexri |
⊢ 𝐴 ∈ ℝ* |
| 135 |
2
|
rexri |
⊢ 𝐵 ∈ ℝ* |
| 136 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 137 |
134 135 136
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 138 |
15 132 133 137
|
lesub1dd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 139 |
15 1 19
|
sylancl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 − 𝐴 ) ∈ ℝ ) |
| 140 |
21
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 141 |
1
|
recni |
⊢ 𝐴 ∈ ℂ |
| 142 |
141
|
subidi |
⊢ ( 𝐴 − 𝐴 ) = 0 |
| 143 |
133 132 133
|
ltsub1d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 − 𝐴 ) < ( 𝐵 − 𝐴 ) ) ) |
| 144 |
7 143
|
mpbii |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 − 𝐴 ) < ( 𝐵 − 𝐴 ) ) |
| 145 |
142 144
|
eqbrtrrid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 0 < ( 𝐵 − 𝐴 ) ) |
| 146 |
|
lediv1 |
⊢ ( ( ( 𝑥 − 𝐴 ) ∈ ℝ ∧ ( 𝐵 − 𝐴 ) ∈ ℝ ∧ ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) ) → ( ( 𝑥 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ↔ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ≤ ( ( 𝐵 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 147 |
139 140 140 145 146
|
syl112anc |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ↔ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ≤ ( ( 𝐵 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 148 |
138 147
|
mpbid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ≤ ( ( 𝐵 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) |
| 149 |
21
|
recni |
⊢ ( 𝐵 − 𝐴 ) ∈ ℂ |
| 150 |
149 29
|
dividi |
⊢ ( ( 𝐵 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = 1 |
| 151 |
148 150
|
breqtrdi |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ≤ 1 ) |
| 152 |
128 131 128 151
|
lesub1dd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 153 |
130 152
|
eqbrtrrd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 0 ≤ ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 154 |
8
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ≤ 𝐸 ) |
| 155 |
125 126 127 153 154
|
lemul1ad |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ≤ ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 156 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐷 ∈ ℝ ) |
| 157 |
6
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐹 ∈ ℝ ) |
| 158 |
140 145
|
elrpd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 159 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 160 |
134 135 159
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ 𝑥 ) |
| 161 |
133 15 133 160
|
lesub1dd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 − 𝐴 ) ≤ ( 𝑥 − 𝐴 ) ) |
| 162 |
142 161
|
eqbrtrrid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 0 ≤ ( 𝑥 − 𝐴 ) ) |
| 163 |
139 158 162
|
divge0d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 0 ≤ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) |
| 164 |
9
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐷 ≤ 𝐹 ) |
| 165 |
156 157 128 163 164
|
lemul1ad |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ≤ ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 166 |
121 122 123 124 155 165
|
le2addd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ≤ ( ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 167 |
15 56
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑈 = ( ( 𝐶 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐷 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 168 |
15 84
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑉 = ( ( 𝐸 · ( 1 − ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) + ( 𝐹 · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 169 |
166 167 168
|
3brtr4d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑈 ≤ 𝑉 ) |
| 170 |
|
ovolicc |
⊢ ( ( 𝑈 ∈ ℝ ∧ 𝑉 ∈ ℝ ∧ 𝑈 ≤ 𝑉 ) → ( vol* ‘ ( 𝑈 [,] 𝑉 ) ) = ( 𝑉 − 𝑈 ) ) |
| 171 |
115 116 169 170
|
syl3anc |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol* ‘ ( 𝑈 [,] 𝑉 ) ) = ( 𝑉 − 𝑈 ) ) |
| 172 |
114 120 171
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( 𝑉 − 𝑈 ) ) |
| 173 |
99 172
|
eqtr4d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) |
| 174 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) = 0 ) |
| 175 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) |
| 176 |
|
nfcv |
⊢ Ⅎ 𝑦 ∅ |
| 177 |
111
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝑆 “ { 𝑥 } ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 178 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
| 179 |
178
|
pm2.21i |
⊢ ( 𝑦 ∈ ∅ → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 180 |
177 179
|
pm5.21ni |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ( 𝑆 “ { 𝑥 } ) ↔ 𝑦 ∈ ∅ ) ) |
| 181 |
175 104 176 180
|
eqrd |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑆 “ { 𝑥 } ) = ∅ ) |
| 182 |
181
|
fveq2d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = ( vol ‘ ∅ ) ) |
| 183 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 184 |
|
mblvol |
⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) |
| 185 |
183 184
|
ax-mp |
⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 186 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 187 |
185 186
|
eqtri |
⊢ ( vol ‘ ∅ ) = 0 |
| 188 |
182 187
|
eqtrdi |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
| 189 |
174 188
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) |
| 190 |
173 189
|
pm2.61i |
⊢ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) = ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) |
| 191 |
190
|
eqcomi |
⊢ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) |
| 192 |
90 62
|
resubcld |
⊢ ( 𝑥 ∈ ℝ → ( 𝑉 − 𝑈 ) ∈ ℝ ) |
| 193 |
|
0re |
⊢ 0 ∈ ℝ |
| 194 |
|
ifcl |
⊢ ( ( ( 𝑉 − 𝑈 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) ∈ ℝ ) |
| 195 |
192 193 194
|
sylancl |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) ∈ ℝ ) |
| 196 |
191 195
|
eqeltrid |
⊢ ( 𝑥 ∈ ℝ → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
| 197 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 198 |
|
ffun |
⊢ ( vol : dom vol ⟶ ( 0 [,] +∞ ) → Fun vol ) |
| 199 |
197 198
|
ax-mp |
⊢ Fun vol |
| 200 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) = ( 𝑈 [,] 𝑉 ) ) |
| 201 |
113 200
|
eqtr4d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑆 “ { 𝑥 } ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) ) |
| 202 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) = ∅ ) |
| 203 |
181 202
|
eqtr4d |
⊢ ( ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑆 “ { 𝑥 } ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) ) |
| 204 |
201 203
|
pm2.61i |
⊢ ( 𝑆 “ { 𝑥 } ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) |
| 205 |
62 90 117
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ → ( 𝑈 [,] 𝑉 ) ∈ dom vol ) |
| 206 |
183
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ∅ ∈ dom vol ) |
| 207 |
205 206
|
ifcld |
⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑈 [,] 𝑉 ) , ∅ ) ∈ dom vol ) |
| 208 |
204 207
|
eqeltrid |
⊢ ( 𝑥 ∈ ℝ → ( 𝑆 “ { 𝑥 } ) ∈ dom vol ) |
| 209 |
|
fvimacnv |
⊢ ( ( Fun vol ∧ ( 𝑆 “ { 𝑥 } ) ∈ dom vol ) → ( ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ↔ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
| 210 |
199 208 209
|
sylancr |
⊢ ( 𝑥 ∈ ℝ → ( ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ↔ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) ) |
| 211 |
196 210
|
mpbid |
⊢ ( 𝑥 ∈ ℝ → ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ) |
| 212 |
211
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) |
| 213 |
14
|
a1i |
⊢ ( 0 ∈ ℝ → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 214 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 215 |
214
|
a1i |
⊢ ( 0 ∈ ℝ → ℝ ∈ dom vol ) |
| 216 |
116 115
|
resubcld |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑉 − 𝑈 ) ∈ ℝ ) |
| 217 |
172 216
|
eqeltrd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
| 218 |
217
|
adantl |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ∈ ℝ ) |
| 219 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 220 |
219 188
|
syl |
⊢ ( 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
| 221 |
220
|
adantl |
⊢ ( ( 0 ∈ ℝ ∧ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = 0 ) |
| 222 |
172
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) |
| 223 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 224 |
223
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 225 |
224
|
a1i |
⊢ ( ⊤ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 226 |
11
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ) |
| 227 |
223
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 228 |
227
|
a1i |
⊢ ( ⊤ → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 229 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 230 |
14 229
|
sstri |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℂ |
| 231 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 232 |
|
cncfmptc |
⊢ ( ( 𝐸 ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 233 |
63 230 231 232
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 234 |
233
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 235 |
230
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℂ ) |
| 236 |
141
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ∈ ℂ ) |
| 237 |
149
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 238 |
29
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 239 |
235 236 237 238
|
divsubdird |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = ( ( 𝑥 / ( 𝐵 − 𝐴 ) ) − ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ) |
| 240 |
239
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = ( ( 𝑥 / ( 𝐵 − 𝐴 ) ) − ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ) |
| 241 |
240
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 / ( 𝐵 − 𝐴 ) ) − ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 242 |
|
resmpt |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ) |
| 243 |
230 242
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) |
| 244 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) |
| 245 |
244
|
divccncf |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 246 |
149 29 245
|
mp2an |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ℂ –cn→ ℂ ) |
| 247 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 248 |
230 246 247
|
mp2 |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 249 |
243 248
|
eqeltrri |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 250 |
249
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 251 |
141 149 29
|
divcli |
⊢ ( 𝐴 / ( 𝐵 − 𝐴 ) ) ∈ ℂ |
| 252 |
|
cncfmptc |
⊢ ( ( ( 𝐴 / ( 𝐵 − 𝐴 ) ) ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 253 |
251 230 231 252
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 254 |
253
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 255 |
223 225 250 254
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 / ( 𝐵 − 𝐴 ) ) − ( 𝐴 / ( 𝐵 − 𝐴 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 256 |
241 255
|
eqeltrd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 257 |
|
cncfmptc |
⊢ ( ( 𝐹 ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 258 |
65 230 231 257
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 259 |
258
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 260 |
223 225 259 234
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 − 𝐸 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 261 |
256 260
|
mulcncf |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 262 |
223 228 234 261
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 263 |
226 262
|
eqeltrid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 264 |
10
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 265 |
|
cncfmptc |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 266 |
17 230 231 265
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 267 |
266
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 268 |
|
cncfmptc |
⊢ ( ( 𝐷 ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 269 |
33 230 231 268
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 270 |
269
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 271 |
223 225 270 267
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐷 − 𝐶 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 272 |
256 271
|
mulcncf |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 273 |
223 228 267 272
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 274 |
264 273
|
eqeltrid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 275 |
223 225 263 274
|
cncfmpt2f |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 276 |
275
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 277 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) ∈ 𝐿1 ) |
| 278 |
1 2 276 277
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑉 − 𝑈 ) ) ∈ 𝐿1 |
| 279 |
222 278
|
eqeltri |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 |
| 280 |
279
|
a1i |
⊢ ( 0 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
| 281 |
213 215 218 221 280
|
iblss2 |
⊢ ( 0 ∈ ℝ → ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) |
| 282 |
193 281
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 |
| 283 |
|
dmarea |
⊢ ( 𝑆 ∈ dom area ↔ ( 𝑆 ⊆ ( ℝ × ℝ ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑆 “ { 𝑥 } ) ∈ ( ◡ vol “ ℝ ) ∧ ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) ) ∈ 𝐿1 ) ) |
| 284 |
98 212 282 283
|
mpbir3an |
⊢ 𝑆 ∈ dom area |
| 285 |
|
areaval |
⊢ ( 𝑆 ∈ dom area → ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 ) |
| 286 |
284 285
|
ax-mp |
⊢ ( area ‘ 𝑆 ) = ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 |
| 287 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) → ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) d 𝑥 ) |
| 288 |
191
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) = if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) ) |
| 289 |
287 288
|
mprg |
⊢ ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) d 𝑥 |
| 290 |
|
itgss2 |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) d 𝑥 ) |
| 291 |
14 290
|
ax-mp |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ∫ ℝ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝑉 − 𝑈 ) , 0 ) d 𝑥 |
| 292 |
65 63
|
addcli |
⊢ ( 𝐹 + 𝐸 ) ∈ ℂ |
| 293 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 294 |
|
div32 |
⊢ ( ( ( 𝐹 + 𝐸 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( ( ( 𝐹 + 𝐸 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 295 |
292 293 149 294
|
mp3an |
⊢ ( ( ( 𝐹 + 𝐸 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 296 |
33 17
|
addcli |
⊢ ( 𝐷 + 𝐶 ) ∈ ℂ |
| 297 |
|
div32 |
⊢ ( ( ( 𝐷 + 𝐶 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( ( ( 𝐷 + 𝐶 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 298 |
296 293 149 297
|
mp3an |
⊢ ( ( ( 𝐷 + 𝐶 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 299 |
295 298
|
oveq12i |
⊢ ( ( ( ( 𝐹 + 𝐸 ) / 2 ) · ( 𝐵 − 𝐴 ) ) − ( ( ( 𝐷 + 𝐶 ) / 2 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) − ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 300 |
|
2cn |
⊢ 2 ∈ ℂ |
| 301 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 302 |
292 300 301
|
divcli |
⊢ ( ( 𝐹 + 𝐸 ) / 2 ) ∈ ℂ |
| 303 |
296 300 301
|
divcli |
⊢ ( ( 𝐷 + 𝐶 ) / 2 ) ∈ ℂ |
| 304 |
302 303 149
|
subdiri |
⊢ ( ( ( ( 𝐹 + 𝐸 ) / 2 ) − ( ( 𝐷 + 𝐶 ) / 2 ) ) · ( 𝐵 − 𝐴 ) ) = ( ( ( ( 𝐹 + 𝐸 ) / 2 ) · ( 𝐵 − 𝐴 ) ) − ( ( ( 𝐷 + 𝐶 ) / 2 ) · ( 𝐵 − 𝐴 ) ) ) |
| 305 |
116
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑉 ∈ ℝ ) |
| 306 |
263
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 307 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ 𝐿1 ) |
| 308 |
1 2 306 307
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ 𝐿1 |
| 309 |
308
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑉 ) ∈ 𝐿1 ) |
| 310 |
115
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑈 ∈ ℝ ) |
| 311 |
274
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 312 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ 𝐿1 ) |
| 313 |
1 2 311 312
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ 𝐿1 |
| 314 |
313
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑈 ) ∈ 𝐿1 ) |
| 315 |
305 309 310 314
|
itgsub |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 ) ) |
| 316 |
315
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 ) |
| 317 |
63 300 301
|
divcan4i |
⊢ ( ( 𝐸 · 2 ) / 2 ) = 𝐸 |
| 318 |
317
|
oveq1i |
⊢ ( ( ( 𝐸 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( 𝐸 · ( 𝐵 − 𝐴 ) ) |
| 319 |
63 300
|
mulcli |
⊢ ( 𝐸 · 2 ) ∈ ℂ |
| 320 |
|
div32 |
⊢ ( ( ( 𝐸 · 2 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( ( ( 𝐸 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐸 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 321 |
319 293 149 320
|
mp3an |
⊢ ( ( ( 𝐸 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐸 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 322 |
318 321
|
eqtr3i |
⊢ ( 𝐸 · ( 𝐵 − 𝐴 ) ) = ( ( 𝐸 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 323 |
322
|
oveq1i |
⊢ ( ( 𝐸 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) = ( ( ( 𝐸 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) + ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 324 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑉 = ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) → ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) d 𝑥 ) |
| 325 |
11
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑉 = ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ) |
| 326 |
324 325
|
mprg |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) d 𝑥 |
| 327 |
5
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐸 ∈ ℝ ) |
| 328 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
| 329 |
1 2 233 328
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ 𝐿1 |
| 330 |
329
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ 𝐿1 ) |
| 331 |
128
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 332 |
6
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 ∈ ℝ ) |
| 333 |
332 327
|
resubcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 − 𝐸 ) ∈ ℝ ) |
| 334 |
331 333
|
remulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ∈ ℝ ) |
| 335 |
261
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 336 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ 𝐿1 ) |
| 337 |
1 2 335 336
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ 𝐿1 |
| 338 |
337
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) ∈ 𝐿1 ) |
| 339 |
327 330 334 338
|
itgadd |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 ) ) |
| 340 |
339
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐸 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 ) |
| 341 |
|
iccmbl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) |
| 342 |
1 2 341
|
mp2an |
⊢ ( 𝐴 [,] 𝐵 ) ∈ dom vol |
| 343 |
|
mblvol |
⊢ ( ( 𝐴 [,] 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 344 |
342 343
|
ax-mp |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) |
| 345 |
1 2 7
|
ltleii |
⊢ 𝐴 ≤ 𝐵 |
| 346 |
|
ovolicc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 347 |
1 2 345 346
|
mp3an |
⊢ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) |
| 348 |
344 347
|
eqtri |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) |
| 349 |
348 21
|
eqeltri |
⊢ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ |
| 350 |
|
itgconst |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ∧ 𝐸 ∈ ℂ ) → ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 = ( 𝐸 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 351 |
342 349 63 350
|
mp3an |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 = ( 𝐸 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 352 |
348
|
oveq2i |
⊢ ( 𝐸 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐸 · ( 𝐵 − 𝐴 ) ) |
| 353 |
351 352
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 = ( 𝐸 · ( 𝐵 − 𝐴 ) ) |
| 354 |
65
|
a1i |
⊢ ( ⊤ → 𝐹 ∈ ℂ ) |
| 355 |
63
|
a1i |
⊢ ( ⊤ → 𝐸 ∈ ℂ ) |
| 356 |
354 355
|
subcld |
⊢ ( ⊤ → ( 𝐹 − 𝐸 ) ∈ ℂ ) |
| 357 |
256
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 358 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ 𝐿1 ) |
| 359 |
1 2 357 358
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ 𝐿1 |
| 360 |
359
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ 𝐿1 ) |
| 361 |
356 331 360
|
itgmulc2 |
⊢ ( ⊤ → ( ( 𝐹 − 𝐸 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 ) |
| 362 |
361
|
mptru |
⊢ ( ( 𝐹 − 𝐸 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 |
| 363 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) d 𝑥 ) |
| 364 |
139
|
recnd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 − 𝐴 ) ∈ ℂ ) |
| 365 |
364 237 238
|
divrec2d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) ) |
| 366 |
363 365
|
mprg |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) d 𝑥 |
| 367 |
15
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 368 |
|
cncfmptid |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 369 |
230 231 368
|
mp2an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 370 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ 𝐿1 ) |
| 371 |
1 2 369 370
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ 𝐿1 |
| 372 |
371
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑥 ) ∈ 𝐿1 ) |
| 373 |
1
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 374 |
|
cncfmptc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 375 |
141 230 231 374
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 376 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ 𝐿1 ) |
| 377 |
1 2 375 376
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ 𝐿1 |
| 378 |
377
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ 𝐿1 ) |
| 379 |
367 372 373 378
|
itgsub |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 ) ) |
| 380 |
379
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 ) |
| 381 |
1
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ ℝ ) |
| 382 |
2
|
a1i |
⊢ ( ⊤ → 𝐵 ∈ ℝ ) |
| 383 |
345
|
a1i |
⊢ ( ⊤ → 𝐴 ≤ 𝐵 ) |
| 384 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 385 |
384
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 386 |
381 382 383 385
|
itgpowd |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) ) |
| 387 |
386
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) |
| 388 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 389 |
388
|
oveq2i |
⊢ ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) = ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / 2 ) |
| 390 |
387 389
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / 2 ) |
| 391 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) = 𝑥 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 ) |
| 392 |
235
|
exp1d |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑥 ↑ 1 ) = 𝑥 ) |
| 393 |
391 392
|
mprg |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 1 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 |
| 394 |
388
|
oveq2i |
⊢ ( 𝐵 ↑ ( 1 + 1 ) ) = ( 𝐵 ↑ 2 ) |
| 395 |
388
|
oveq2i |
⊢ ( 𝐴 ↑ ( 1 + 1 ) ) = ( 𝐴 ↑ 2 ) |
| 396 |
394 395
|
oveq12i |
⊢ ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) = ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) |
| 397 |
396
|
oveq1i |
⊢ ( ( ( 𝐵 ↑ ( 1 + 1 ) ) − ( 𝐴 ↑ ( 1 + 1 ) ) ) / 2 ) = ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) |
| 398 |
390 393 397
|
3eqtr3i |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 = ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) |
| 399 |
|
itgconst |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 = ( 𝐴 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 400 |
342 349 141 399
|
mp3an |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 = ( 𝐴 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 401 |
348
|
oveq2i |
⊢ ( 𝐴 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐴 · ( 𝐵 − 𝐴 ) ) |
| 402 |
400 401
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 = ( 𝐴 · ( 𝐵 − 𝐴 ) ) |
| 403 |
398 402
|
oveq12i |
⊢ ( ∫ ( 𝐴 [,] 𝐵 ) 𝑥 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝐴 d 𝑥 ) = ( ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) − ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) |
| 404 |
380 403
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 = ( ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) − ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) |
| 405 |
404
|
oveq2i |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 ) = ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) − ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) ) |
| 406 |
23
|
a1i |
⊢ ( ⊤ → 𝐵 ∈ ℂ ) |
| 407 |
141
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
| 408 |
406 407
|
subcld |
⊢ ( ⊤ → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 409 |
26
|
a1i |
⊢ ( ⊤ → 𝐵 ≠ 𝐴 ) |
| 410 |
406 407 409
|
subne0d |
⊢ ( ⊤ → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 411 |
408 410
|
reccld |
⊢ ( ⊤ → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 412 |
411
|
mptru |
⊢ ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℂ |
| 413 |
23
|
sqcli |
⊢ ( 𝐵 ↑ 2 ) ∈ ℂ |
| 414 |
141
|
sqcli |
⊢ ( 𝐴 ↑ 2 ) ∈ ℂ |
| 415 |
413 414
|
subcli |
⊢ ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℂ |
| 416 |
415 300 301
|
divcli |
⊢ ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ∈ ℂ |
| 417 |
141 149
|
mulcli |
⊢ ( 𝐴 · ( 𝐵 − 𝐴 ) ) ∈ ℂ |
| 418 |
412 416 417
|
subdii |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) − ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) ) = ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) ) |
| 419 |
405 418
|
eqtri |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 ) = ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) ) |
| 420 |
139
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 − 𝐴 ) ∈ ℝ ) |
| 421 |
367 372 373 378
|
iblsub |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 − 𝐴 ) ) ∈ 𝐿1 ) |
| 422 |
411 420 421
|
itgmulc2 |
⊢ ( ⊤ → ( ( 1 / ( 𝐵 − 𝐴 ) ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) d 𝑥 ) |
| 423 |
422
|
mptru |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 − 𝐴 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) d 𝑥 |
| 424 |
412 417
|
mulcomi |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) = ( ( 𝐴 · ( 𝐵 − 𝐴 ) ) · ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 425 |
417 149 29
|
divreci |
⊢ ( ( 𝐴 · ( 𝐵 − 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( 𝐴 · ( 𝐵 − 𝐴 ) ) · ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 426 |
141 149 29
|
divcan4i |
⊢ ( ( 𝐴 · ( 𝐵 − 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = 𝐴 |
| 427 |
424 425 426
|
3eqtr2i |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) = 𝐴 |
| 428 |
427
|
oveq2i |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝐴 · ( 𝐵 − 𝐴 ) ) ) ) = ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − 𝐴 ) |
| 429 |
419 423 428
|
3eqtr3i |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( 𝑥 − 𝐴 ) ) d 𝑥 = ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − 𝐴 ) |
| 430 |
366 429
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 = ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − 𝐴 ) |
| 431 |
23 141
|
subsqi |
⊢ ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) = ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) |
| 432 |
431
|
oveq1i |
⊢ ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) = ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) / 2 ) |
| 433 |
432
|
oveq2i |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) = ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) / 2 ) ) |
| 434 |
431 415
|
eqeltrri |
⊢ ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) ∈ ℂ |
| 435 |
412 434 300 301
|
divassi |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) ) / 2 ) = ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) / 2 ) ) |
| 436 |
412 434
|
mulcomi |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) · ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 437 |
434 149 29
|
divreci |
⊢ ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) · ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 438 |
23 141
|
addcli |
⊢ ( 𝐵 + 𝐴 ) ∈ ℂ |
| 439 |
438 149 29
|
divcan4i |
⊢ ( ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( 𝐵 + 𝐴 ) |
| 440 |
436 437 439
|
3eqtr2i |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) ) = ( 𝐵 + 𝐴 ) |
| 441 |
440
|
oveq1i |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( 𝐵 + 𝐴 ) · ( 𝐵 − 𝐴 ) ) ) / 2 ) = ( ( 𝐵 + 𝐴 ) / 2 ) |
| 442 |
433 435 441
|
3eqtr2i |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) = ( ( 𝐵 + 𝐴 ) / 2 ) |
| 443 |
442
|
oveq1i |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) · ( ( ( 𝐵 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) / 2 ) ) − 𝐴 ) = ( ( ( 𝐵 + 𝐴 ) / 2 ) − 𝐴 ) |
| 444 |
141 300
|
mulcli |
⊢ ( 𝐴 · 2 ) ∈ ℂ |
| 445 |
|
divsubdir |
⊢ ( ( ( 𝐵 + 𝐴 ) ∈ ℂ ∧ ( 𝐴 · 2 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝐵 + 𝐴 ) − ( 𝐴 · 2 ) ) / 2 ) = ( ( ( 𝐵 + 𝐴 ) / 2 ) − ( ( 𝐴 · 2 ) / 2 ) ) ) |
| 446 |
438 444 293 445
|
mp3an |
⊢ ( ( ( 𝐵 + 𝐴 ) − ( 𝐴 · 2 ) ) / 2 ) = ( ( ( 𝐵 + 𝐴 ) / 2 ) − ( ( 𝐴 · 2 ) / 2 ) ) |
| 447 |
23 141 444
|
addsubassi |
⊢ ( ( 𝐵 + 𝐴 ) − ( 𝐴 · 2 ) ) = ( 𝐵 + ( 𝐴 − ( 𝐴 · 2 ) ) ) |
| 448 |
|
subsub2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐴 · 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 − ( ( 𝐴 · 2 ) − 𝐴 ) ) = ( 𝐵 + ( 𝐴 − ( 𝐴 · 2 ) ) ) ) |
| 449 |
23 444 141 448
|
mp3an |
⊢ ( 𝐵 − ( ( 𝐴 · 2 ) − 𝐴 ) ) = ( 𝐵 + ( 𝐴 − ( 𝐴 · 2 ) ) ) |
| 450 |
141
|
times2i |
⊢ ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) |
| 451 |
450
|
oveq1i |
⊢ ( ( 𝐴 · 2 ) − 𝐴 ) = ( ( 𝐴 + 𝐴 ) − 𝐴 ) |
| 452 |
141 141
|
pncan3oi |
⊢ ( ( 𝐴 + 𝐴 ) − 𝐴 ) = 𝐴 |
| 453 |
451 452
|
eqtri |
⊢ ( ( 𝐴 · 2 ) − 𝐴 ) = 𝐴 |
| 454 |
453
|
oveq2i |
⊢ ( 𝐵 − ( ( 𝐴 · 2 ) − 𝐴 ) ) = ( 𝐵 − 𝐴 ) |
| 455 |
447 449 454
|
3eqtr2i |
⊢ ( ( 𝐵 + 𝐴 ) − ( 𝐴 · 2 ) ) = ( 𝐵 − 𝐴 ) |
| 456 |
455
|
oveq1i |
⊢ ( ( ( 𝐵 + 𝐴 ) − ( 𝐴 · 2 ) ) / 2 ) = ( ( 𝐵 − 𝐴 ) / 2 ) |
| 457 |
141 300 301
|
divcan4i |
⊢ ( ( 𝐴 · 2 ) / 2 ) = 𝐴 |
| 458 |
457
|
oveq2i |
⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) − ( ( 𝐴 · 2 ) / 2 ) ) = ( ( ( 𝐵 + 𝐴 ) / 2 ) − 𝐴 ) |
| 459 |
446 456 458
|
3eqtr3ri |
⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) − 𝐴 ) = ( ( 𝐵 − 𝐴 ) / 2 ) |
| 460 |
430 443 459
|
3eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 = ( ( 𝐵 − 𝐴 ) / 2 ) |
| 461 |
460
|
oveq2i |
⊢ ( ( 𝐹 − 𝐸 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 462 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 ) |
| 463 |
65 63
|
subcli |
⊢ ( 𝐹 − 𝐸 ) ∈ ℂ |
| 464 |
463
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐹 − 𝐸 ) ∈ ℂ ) |
| 465 |
464 129
|
mulcomd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) ) |
| 466 |
462 465
|
mprg |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 − 𝐸 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 |
| 467 |
362 461 466
|
3eqtr3ri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 = ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 468 |
353 467
|
oveq12i |
⊢ ( ∫ ( 𝐴 [,] 𝐵 ) 𝐸 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐹 − 𝐸 ) ) d 𝑥 ) = ( ( 𝐸 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 469 |
326 340 468
|
3eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 = ( ( 𝐸 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 470 |
149 300 301
|
divcli |
⊢ ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℂ |
| 471 |
319 463 470
|
adddiri |
⊢ ( ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) = ( ( ( 𝐸 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) + ( ( 𝐹 − 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 472 |
323 469 471
|
3eqtr4i |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 = ( ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 473 |
|
addsub12 |
⊢ ( ( 𝐹 ∈ ℂ ∧ ( 𝐸 · 2 ) ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ( 𝐹 + ( ( 𝐸 · 2 ) − 𝐸 ) ) = ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) ) |
| 474 |
65 319 63 473
|
mp3an |
⊢ ( 𝐹 + ( ( 𝐸 · 2 ) − 𝐸 ) ) = ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) |
| 475 |
63
|
times2i |
⊢ ( 𝐸 · 2 ) = ( 𝐸 + 𝐸 ) |
| 476 |
475
|
oveq1i |
⊢ ( ( 𝐸 · 2 ) − 𝐸 ) = ( ( 𝐸 + 𝐸 ) − 𝐸 ) |
| 477 |
63 63
|
pncan3oi |
⊢ ( ( 𝐸 + 𝐸 ) − 𝐸 ) = 𝐸 |
| 478 |
476 477
|
eqtri |
⊢ ( ( 𝐸 · 2 ) − 𝐸 ) = 𝐸 |
| 479 |
478
|
oveq2i |
⊢ ( 𝐹 + ( ( 𝐸 · 2 ) − 𝐸 ) ) = ( 𝐹 + 𝐸 ) |
| 480 |
474 479
|
eqtr3i |
⊢ ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) = ( 𝐹 + 𝐸 ) |
| 481 |
480
|
oveq1i |
⊢ ( ( ( 𝐸 · 2 ) + ( 𝐹 − 𝐸 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) = ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 482 |
472 481
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 = ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 483 |
17 300 301
|
divcan4i |
⊢ ( ( 𝐶 · 2 ) / 2 ) = 𝐶 |
| 484 |
483
|
oveq1i |
⊢ ( ( ( 𝐶 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( 𝐶 · ( 𝐵 − 𝐴 ) ) |
| 485 |
17 300
|
mulcli |
⊢ ( 𝐶 · 2 ) ∈ ℂ |
| 486 |
|
div32 |
⊢ ( ( ( 𝐶 · 2 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( ( ( 𝐶 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐶 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 487 |
485 293 149 486
|
mp3an |
⊢ ( ( ( 𝐶 · 2 ) / 2 ) · ( 𝐵 − 𝐴 ) ) = ( ( 𝐶 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 488 |
484 487
|
eqtr3i |
⊢ ( 𝐶 · ( 𝐵 − 𝐴 ) ) = ( ( 𝐶 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 489 |
488
|
oveq1i |
⊢ ( ( 𝐶 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) = ( ( ( 𝐶 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) + ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 490 |
10
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑈 = ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 491 |
490
|
itgeq2dv |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) d 𝑥 ) |
| 492 |
491
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) d 𝑥 |
| 493 |
3
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 494 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 495 |
1 2 266 494
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 |
| 496 |
495
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) |
| 497 |
4
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ ) |
| 498 |
497 493
|
resubcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 499 |
331 498
|
remulcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ∈ ℝ ) |
| 500 |
272
|
mptru |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 501 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ 𝐿1 ) |
| 502 |
1 2 500 501
|
mp3an |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ 𝐿1 |
| 503 |
502
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) ∈ 𝐿1 ) |
| 504 |
493 496 499 503
|
itgadd |
⊢ ( ⊤ → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 ) ) |
| 505 |
504
|
mptru |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝐶 + ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 ) |
| 506 |
|
itgconst |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ dom vol ∧ ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 = ( 𝐶 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 507 |
342 349 17 506
|
mp3an |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 = ( 𝐶 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 508 |
348
|
oveq2i |
⊢ ( 𝐶 · ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐶 · ( 𝐵 − 𝐴 ) ) |
| 509 |
507 508
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 = ( 𝐶 · ( 𝐵 − 𝐴 ) ) |
| 510 |
33
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ℂ ) |
| 511 |
17
|
a1i |
⊢ ( ⊤ → 𝐶 ∈ ℂ ) |
| 512 |
510 511
|
subcld |
⊢ ( ⊤ → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 513 |
512 331 360
|
itgmulc2 |
⊢ ( ⊤ → ( ( 𝐷 − 𝐶 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 ) |
| 514 |
513
|
mptru |
⊢ ( ( 𝐷 − 𝐶 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 |
| 515 |
460
|
oveq2i |
⊢ ( ( 𝐷 − 𝐶 ) · ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) d 𝑥 ) = ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 516 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 ) |
| 517 |
33 17
|
subcli |
⊢ ( 𝐷 − 𝐶 ) ∈ ℂ |
| 518 |
517
|
a1i |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 519 |
518 129
|
mulcomd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) = ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 520 |
516 519
|
mprg |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝐷 − 𝐶 ) · ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 |
| 521 |
514 515 520
|
3eqtr3ri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 = ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 522 |
509 521
|
oveq12i |
⊢ ( ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( ( ( 𝑥 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐷 − 𝐶 ) ) d 𝑥 ) = ( ( 𝐶 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 523 |
492 505 522
|
3eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 = ( ( 𝐶 · ( 𝐵 − 𝐴 ) ) + ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 524 |
485 517 470
|
adddiri |
⊢ ( ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) = ( ( ( 𝐶 · 2 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) + ( ( 𝐷 − 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 525 |
489 523 524
|
3eqtr4i |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 = ( ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 526 |
|
addsub12 |
⊢ ( ( 𝐷 ∈ ℂ ∧ ( 𝐶 · 2 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐷 + ( ( 𝐶 · 2 ) − 𝐶 ) ) = ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) ) |
| 527 |
33 485 17 526
|
mp3an |
⊢ ( 𝐷 + ( ( 𝐶 · 2 ) − 𝐶 ) ) = ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) |
| 528 |
17
|
times2i |
⊢ ( 𝐶 · 2 ) = ( 𝐶 + 𝐶 ) |
| 529 |
528
|
oveq1i |
⊢ ( ( 𝐶 · 2 ) − 𝐶 ) = ( ( 𝐶 + 𝐶 ) − 𝐶 ) |
| 530 |
17 17
|
pncan3oi |
⊢ ( ( 𝐶 + 𝐶 ) − 𝐶 ) = 𝐶 |
| 531 |
529 530
|
eqtri |
⊢ ( ( 𝐶 · 2 ) − 𝐶 ) = 𝐶 |
| 532 |
531
|
oveq2i |
⊢ ( 𝐷 + ( ( 𝐶 · 2 ) − 𝐶 ) ) = ( 𝐷 + 𝐶 ) |
| 533 |
527 532
|
eqtr3i |
⊢ ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) = ( 𝐷 + 𝐶 ) |
| 534 |
533
|
oveq1i |
⊢ ( ( ( 𝐶 · 2 ) + ( 𝐷 − 𝐶 ) ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) = ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 535 |
525 534
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 = ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 536 |
482 535
|
oveq12i |
⊢ ( ∫ ( 𝐴 [,] 𝐵 ) 𝑉 d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) 𝑈 d 𝑥 ) = ( ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) − ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 537 |
316 536
|
eqtri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ( ( ( 𝐹 + 𝐸 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) − ( ( 𝐷 + 𝐶 ) · ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 538 |
299 304 537
|
3eqtr4ri |
⊢ ∫ ( 𝐴 [,] 𝐵 ) ( 𝑉 − 𝑈 ) d 𝑥 = ( ( ( ( 𝐹 + 𝐸 ) / 2 ) − ( ( 𝐷 + 𝐶 ) / 2 ) ) · ( 𝐵 − 𝐴 ) ) |
| 539 |
289 291 538
|
3eqtr2i |
⊢ ∫ ℝ ( vol ‘ ( 𝑆 “ { 𝑥 } ) ) d 𝑥 = ( ( ( ( 𝐹 + 𝐸 ) / 2 ) − ( ( 𝐷 + 𝐶 ) / 2 ) ) · ( 𝐵 − 𝐴 ) ) |
| 540 |
286 539
|
eqtri |
⊢ ( area ‘ 𝑆 ) = ( ( ( ( 𝐹 + 𝐸 ) / 2 ) − ( ( 𝐷 + 𝐶 ) / 2 ) ) · ( 𝐵 − 𝐴 ) ) |