Step |
Hyp |
Ref |
Expression |
1 |
|
areaquad.1 |
|- A e. RR |
2 |
|
areaquad.2 |
|- B e. RR |
3 |
|
areaquad.3 |
|- C e. RR |
4 |
|
areaquad.4 |
|- D e. RR |
5 |
|
areaquad.5 |
|- E e. RR |
6 |
|
areaquad.6 |
|- F e. RR |
7 |
|
areaquad.7 |
|- A < B |
8 |
|
areaquad.8 |
|- C <_ E |
9 |
|
areaquad.9 |
|- D <_ F |
10 |
|
areaquad.10 |
|- U = ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) |
11 |
|
areaquad.11 |
|- V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) |
12 |
|
areaquad.12 |
|- S = { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } |
13 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
14 |
1 2 13
|
mp2an |
|- ( A [,] B ) C_ RR |
15 |
14
|
sseli |
|- ( x e. ( A [,] B ) -> x e. RR ) |
16 |
15
|
adantr |
|- ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> x e. RR ) |
17 |
3
|
recni |
|- C e. CC |
18 |
17
|
a1i |
|- ( x e. RR -> C e. CC ) |
19 |
|
resubcl |
|- ( ( x e. RR /\ A e. RR ) -> ( x - A ) e. RR ) |
20 |
1 19
|
mpan2 |
|- ( x e. RR -> ( x - A ) e. RR ) |
21 |
2 1
|
resubcli |
|- ( B - A ) e. RR |
22 |
21
|
a1i |
|- ( x e. RR -> ( B - A ) e. RR ) |
23 |
2
|
recni |
|- B e. CC |
24 |
23
|
a1i |
|- ( A e. RR -> B e. CC ) |
25 |
|
recn |
|- ( A e. RR -> A e. CC ) |
26 |
1 7
|
gtneii |
|- B =/= A |
27 |
26
|
a1i |
|- ( A e. RR -> B =/= A ) |
28 |
24 25 27
|
subne0d |
|- ( A e. RR -> ( B - A ) =/= 0 ) |
29 |
1 28
|
ax-mp |
|- ( B - A ) =/= 0 |
30 |
29
|
a1i |
|- ( x e. RR -> ( B - A ) =/= 0 ) |
31 |
20 22 30
|
redivcld |
|- ( x e. RR -> ( ( x - A ) / ( B - A ) ) e. RR ) |
32 |
31
|
recnd |
|- ( x e. RR -> ( ( x - A ) / ( B - A ) ) e. CC ) |
33 |
4
|
recni |
|- D e. CC |
34 |
33
|
a1i |
|- ( x e. RR -> D e. CC ) |
35 |
32 34
|
mulcld |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. D ) e. CC ) |
36 |
32 18
|
mulcld |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. C ) e. CC ) |
37 |
18 35 36
|
addsub12d |
|- ( x e. RR -> ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) |
38 |
32 34 18
|
subdid |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) |
39 |
38
|
oveq2d |
|- ( x e. RR -> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) = ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) |
40 |
10 39
|
syl5eq |
|- ( x e. RR -> U = ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) |
41 |
|
1cnd |
|- ( x e. RR -> 1 e. CC ) |
42 |
41 32 18
|
subdird |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( ( 1 x. C ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) |
43 |
17
|
mulid2i |
|- ( 1 x. C ) = C |
44 |
43
|
oveq1i |
|- ( ( 1 x. C ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) = ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) |
45 |
42 44
|
eqtrdi |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) |
46 |
45
|
oveq2d |
|- ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) |
47 |
37 40 46
|
3eqtr4d |
|- ( x e. RR -> U = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) ) |
48 |
|
1red |
|- ( x e. RR -> 1 e. RR ) |
49 |
48 31
|
resubcld |
|- ( x e. RR -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. RR ) |
50 |
49
|
recnd |
|- ( x e. RR -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. CC ) |
51 |
50 18
|
mulcld |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) e. CC ) |
52 |
35 51
|
addcomd |
|- ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) = ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) + ( ( ( x - A ) / ( B - A ) ) x. D ) ) ) |
53 |
50 18
|
mulcomd |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) |
54 |
32 34
|
mulcomd |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. D ) = ( D x. ( ( x - A ) / ( B - A ) ) ) ) |
55 |
53 54
|
oveq12d |
|- ( x e. RR -> ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) + ( ( ( x - A ) / ( B - A ) ) x. D ) ) = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) |
56 |
47 52 55
|
3eqtrd |
|- ( x e. RR -> U = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) |
57 |
3
|
a1i |
|- ( x e. RR -> C e. RR ) |
58 |
57 49
|
remulcld |
|- ( x e. RR -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
59 |
4
|
a1i |
|- ( x e. RR -> D e. RR ) |
60 |
59 31
|
remulcld |
|- ( x e. RR -> ( D x. ( ( x - A ) / ( B - A ) ) ) e. RR ) |
61 |
58 60
|
readdcld |
|- ( x e. RR -> ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
62 |
56 61
|
eqeltrd |
|- ( x e. RR -> U e. RR ) |
63 |
5
|
recni |
|- E e. CC |
64 |
63
|
a1i |
|- ( x e. RR -> E e. CC ) |
65 |
6
|
recni |
|- F e. CC |
66 |
65
|
a1i |
|- ( x e. RR -> F e. CC ) |
67 |
32 66
|
mulcld |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. F ) e. CC ) |
68 |
32 64
|
mulcld |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. E ) e. CC ) |
69 |
64 67 68
|
addsub12d |
|- ( x e. RR -> ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) |
70 |
32 66 64
|
subdid |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) |
71 |
70
|
oveq2d |
|- ( x e. RR -> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) = ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) |
72 |
11 71
|
syl5eq |
|- ( x e. RR -> V = ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) |
73 |
41 32 64
|
subdird |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( ( 1 x. E ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) |
74 |
63
|
mulid2i |
|- ( 1 x. E ) = E |
75 |
74
|
oveq1i |
|- ( ( 1 x. E ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) = ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) |
76 |
73 75
|
eqtrdi |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) |
77 |
76
|
oveq2d |
|- ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) |
78 |
69 72 77
|
3eqtr4d |
|- ( x e. RR -> V = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) ) |
79 |
50 64
|
mulcld |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) e. CC ) |
80 |
67 79
|
addcomd |
|- ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) = ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) + ( ( ( x - A ) / ( B - A ) ) x. F ) ) ) |
81 |
50 64
|
mulcomd |
|- ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) |
82 |
32 66
|
mulcomd |
|- ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. F ) = ( F x. ( ( x - A ) / ( B - A ) ) ) ) |
83 |
81 82
|
oveq12d |
|- ( x e. RR -> ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) + ( ( ( x - A ) / ( B - A ) ) x. F ) ) = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) |
84 |
78 80 83
|
3eqtrd |
|- ( x e. RR -> V = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) |
85 |
5
|
a1i |
|- ( x e. RR -> E e. RR ) |
86 |
85 49
|
remulcld |
|- ( x e. RR -> ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
87 |
6
|
a1i |
|- ( x e. RR -> F e. RR ) |
88 |
87 31
|
remulcld |
|- ( x e. RR -> ( F x. ( ( x - A ) / ( B - A ) ) ) e. RR ) |
89 |
86 88
|
readdcld |
|- ( x e. RR -> ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
90 |
84 89
|
eqeltrd |
|- ( x e. RR -> V e. RR ) |
91 |
|
iccssre |
|- ( ( U e. RR /\ V e. RR ) -> ( U [,] V ) C_ RR ) |
92 |
62 90 91
|
syl2anc |
|- ( x e. RR -> ( U [,] V ) C_ RR ) |
93 |
15 92
|
syl |
|- ( x e. ( A [,] B ) -> ( U [,] V ) C_ RR ) |
94 |
93
|
sselda |
|- ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> y e. RR ) |
95 |
16 94
|
jca |
|- ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> ( x e. RR /\ y e. RR ) ) |
96 |
95
|
ssopab2i |
|- { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } C_ { <. x , y >. | ( x e. RR /\ y e. RR ) } |
97 |
|
df-xp |
|- ( RR X. RR ) = { <. x , y >. | ( x e. RR /\ y e. RR ) } |
98 |
96 12 97
|
3sstr4i |
|- S C_ ( RR X. RR ) |
99 |
|
iftrue |
|- ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( V - U ) ) |
100 |
|
nfv |
|- F/ y x e. ( A [,] B ) |
101 |
|
nfopab2 |
|- F/_ y { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } |
102 |
12 101
|
nfcxfr |
|- F/_ y S |
103 |
|
nfcv |
|- F/_ y { x } |
104 |
102 103
|
nfima |
|- F/_ y ( S " { x } ) |
105 |
|
nfcv |
|- F/_ y ( U [,] V ) |
106 |
|
vex |
|- x e. _V |
107 |
|
vex |
|- y e. _V |
108 |
106 107
|
elimasn |
|- ( y e. ( S " { x } ) <-> <. x , y >. e. S ) |
109 |
12
|
eleq2i |
|- ( <. x , y >. e. S <-> <. x , y >. e. { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } ) |
110 |
|
opabidw |
|- ( <. x , y >. e. { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } <-> ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) ) |
111 |
108 109 110
|
3bitri |
|- ( y e. ( S " { x } ) <-> ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) ) |
112 |
111
|
baib |
|- ( x e. ( A [,] B ) -> ( y e. ( S " { x } ) <-> y e. ( U [,] V ) ) ) |
113 |
100 104 105 112
|
eqrd |
|- ( x e. ( A [,] B ) -> ( S " { x } ) = ( U [,] V ) ) |
114 |
113
|
fveq2d |
|- ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( vol ` ( U [,] V ) ) ) |
115 |
15 62
|
syl |
|- ( x e. ( A [,] B ) -> U e. RR ) |
116 |
15 90
|
syl |
|- ( x e. ( A [,] B ) -> V e. RR ) |
117 |
|
iccmbl |
|- ( ( U e. RR /\ V e. RR ) -> ( U [,] V ) e. dom vol ) |
118 |
115 116 117
|
syl2anc |
|- ( x e. ( A [,] B ) -> ( U [,] V ) e. dom vol ) |
119 |
|
mblvol |
|- ( ( U [,] V ) e. dom vol -> ( vol ` ( U [,] V ) ) = ( vol* ` ( U [,] V ) ) ) |
120 |
118 119
|
syl |
|- ( x e. ( A [,] B ) -> ( vol ` ( U [,] V ) ) = ( vol* ` ( U [,] V ) ) ) |
121 |
15 58
|
syl |
|- ( x e. ( A [,] B ) -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
122 |
15 60
|
syl |
|- ( x e. ( A [,] B ) -> ( D x. ( ( x - A ) / ( B - A ) ) ) e. RR ) |
123 |
15 86
|
syl |
|- ( x e. ( A [,] B ) -> ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) |
124 |
15 88
|
syl |
|- ( x e. ( A [,] B ) -> ( F x. ( ( x - A ) / ( B - A ) ) ) e. RR ) |
125 |
3
|
a1i |
|- ( x e. ( A [,] B ) -> C e. RR ) |
126 |
5
|
a1i |
|- ( x e. ( A [,] B ) -> E e. RR ) |
127 |
15 49
|
syl |
|- ( x e. ( A [,] B ) -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. RR ) |
128 |
15 31
|
syl |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) e. RR ) |
129 |
128
|
recnd |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) e. CC ) |
130 |
129
|
subidd |
|- ( x e. ( A [,] B ) -> ( ( ( x - A ) / ( B - A ) ) - ( ( x - A ) / ( B - A ) ) ) = 0 ) |
131 |
|
1red |
|- ( x e. ( A [,] B ) -> 1 e. RR ) |
132 |
2
|
a1i |
|- ( x e. ( A [,] B ) -> B e. RR ) |
133 |
1
|
a1i |
|- ( x e. ( A [,] B ) -> A e. RR ) |
134 |
1
|
rexri |
|- A e. RR* |
135 |
2
|
rexri |
|- B e. RR* |
136 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
137 |
134 135 136
|
mp3an12 |
|- ( x e. ( A [,] B ) -> x <_ B ) |
138 |
15 132 133 137
|
lesub1dd |
|- ( x e. ( A [,] B ) -> ( x - A ) <_ ( B - A ) ) |
139 |
15 1 19
|
sylancl |
|- ( x e. ( A [,] B ) -> ( x - A ) e. RR ) |
140 |
21
|
a1i |
|- ( x e. ( A [,] B ) -> ( B - A ) e. RR ) |
141 |
1
|
recni |
|- A e. CC |
142 |
141
|
subidi |
|- ( A - A ) = 0 |
143 |
133 132 133
|
ltsub1d |
|- ( x e. ( A [,] B ) -> ( A < B <-> ( A - A ) < ( B - A ) ) ) |
144 |
7 143
|
mpbii |
|- ( x e. ( A [,] B ) -> ( A - A ) < ( B - A ) ) |
145 |
142 144
|
eqbrtrrid |
|- ( x e. ( A [,] B ) -> 0 < ( B - A ) ) |
146 |
|
lediv1 |
|- ( ( ( x - A ) e. RR /\ ( B - A ) e. RR /\ ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) -> ( ( x - A ) <_ ( B - A ) <-> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) ) |
147 |
139 140 140 145 146
|
syl112anc |
|- ( x e. ( A [,] B ) -> ( ( x - A ) <_ ( B - A ) <-> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) ) |
148 |
138 147
|
mpbid |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) |
149 |
21
|
recni |
|- ( B - A ) e. CC |
150 |
149 29
|
dividi |
|- ( ( B - A ) / ( B - A ) ) = 1 |
151 |
148 150
|
breqtrdi |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) <_ 1 ) |
152 |
128 131 128 151
|
lesub1dd |
|- ( x e. ( A [,] B ) -> ( ( ( x - A ) / ( B - A ) ) - ( ( x - A ) / ( B - A ) ) ) <_ ( 1 - ( ( x - A ) / ( B - A ) ) ) ) |
153 |
130 152
|
eqbrtrrd |
|- ( x e. ( A [,] B ) -> 0 <_ ( 1 - ( ( x - A ) / ( B - A ) ) ) ) |
154 |
8
|
a1i |
|- ( x e. ( A [,] B ) -> C <_ E ) |
155 |
125 126 127 153 154
|
lemul1ad |
|- ( x e. ( A [,] B ) -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) <_ ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) |
156 |
4
|
a1i |
|- ( x e. ( A [,] B ) -> D e. RR ) |
157 |
6
|
a1i |
|- ( x e. ( A [,] B ) -> F e. RR ) |
158 |
140 145
|
elrpd |
|- ( x e. ( A [,] B ) -> ( B - A ) e. RR+ ) |
159 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
160 |
134 135 159
|
mp3an12 |
|- ( x e. ( A [,] B ) -> A <_ x ) |
161 |
133 15 133 160
|
lesub1dd |
|- ( x e. ( A [,] B ) -> ( A - A ) <_ ( x - A ) ) |
162 |
142 161
|
eqbrtrrid |
|- ( x e. ( A [,] B ) -> 0 <_ ( x - A ) ) |
163 |
139 158 162
|
divge0d |
|- ( x e. ( A [,] B ) -> 0 <_ ( ( x - A ) / ( B - A ) ) ) |
164 |
9
|
a1i |
|- ( x e. ( A [,] B ) -> D <_ F ) |
165 |
156 157 128 163 164
|
lemul1ad |
|- ( x e. ( A [,] B ) -> ( D x. ( ( x - A ) / ( B - A ) ) ) <_ ( F x. ( ( x - A ) / ( B - A ) ) ) ) |
166 |
121 122 123 124 155 165
|
le2addd |
|- ( x e. ( A [,] B ) -> ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) <_ ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) |
167 |
15 56
|
syl |
|- ( x e. ( A [,] B ) -> U = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) |
168 |
15 84
|
syl |
|- ( x e. ( A [,] B ) -> V = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) |
169 |
166 167 168
|
3brtr4d |
|- ( x e. ( A [,] B ) -> U <_ V ) |
170 |
|
ovolicc |
|- ( ( U e. RR /\ V e. RR /\ U <_ V ) -> ( vol* ` ( U [,] V ) ) = ( V - U ) ) |
171 |
115 116 169 170
|
syl3anc |
|- ( x e. ( A [,] B ) -> ( vol* ` ( U [,] V ) ) = ( V - U ) ) |
172 |
114 120 171
|
3eqtrd |
|- ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( V - U ) ) |
173 |
99 172
|
eqtr4d |
|- ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) ) |
174 |
|
iffalse |
|- ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = 0 ) |
175 |
|
nfv |
|- F/ y -. x e. ( A [,] B ) |
176 |
|
nfcv |
|- F/_ y (/) |
177 |
111
|
simplbi |
|- ( y e. ( S " { x } ) -> x e. ( A [,] B ) ) |
178 |
|
noel |
|- -. y e. (/) |
179 |
178
|
pm2.21i |
|- ( y e. (/) -> x e. ( A [,] B ) ) |
180 |
177 179
|
pm5.21ni |
|- ( -. x e. ( A [,] B ) -> ( y e. ( S " { x } ) <-> y e. (/) ) ) |
181 |
175 104 176 180
|
eqrd |
|- ( -. x e. ( A [,] B ) -> ( S " { x } ) = (/) ) |
182 |
181
|
fveq2d |
|- ( -. x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( vol ` (/) ) ) |
183 |
|
0mbl |
|- (/) e. dom vol |
184 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
185 |
183 184
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
186 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
187 |
185 186
|
eqtri |
|- ( vol ` (/) ) = 0 |
188 |
182 187
|
eqtrdi |
|- ( -. x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = 0 ) |
189 |
174 188
|
eqtr4d |
|- ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) ) |
190 |
173 189
|
pm2.61i |
|- if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) |
191 |
190
|
eqcomi |
|- ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) |
192 |
90 62
|
resubcld |
|- ( x e. RR -> ( V - U ) e. RR ) |
193 |
|
0re |
|- 0 e. RR |
194 |
|
ifcl |
|- ( ( ( V - U ) e. RR /\ 0 e. RR ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) e. RR ) |
195 |
192 193 194
|
sylancl |
|- ( x e. RR -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) e. RR ) |
196 |
191 195
|
eqeltrid |
|- ( x e. RR -> ( vol ` ( S " { x } ) ) e. RR ) |
197 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
198 |
|
ffun |
|- ( vol : dom vol --> ( 0 [,] +oo ) -> Fun vol ) |
199 |
197 198
|
ax-mp |
|- Fun vol |
200 |
|
iftrue |
|- ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) = ( U [,] V ) ) |
201 |
113 200
|
eqtr4d |
|- ( x e. ( A [,] B ) -> ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) ) |
202 |
|
iffalse |
|- ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) = (/) ) |
203 |
181 202
|
eqtr4d |
|- ( -. x e. ( A [,] B ) -> ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) ) |
204 |
201 203
|
pm2.61i |
|- ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) |
205 |
62 90 117
|
syl2anc |
|- ( x e. RR -> ( U [,] V ) e. dom vol ) |
206 |
183
|
a1i |
|- ( x e. RR -> (/) e. dom vol ) |
207 |
205 206
|
ifcld |
|- ( x e. RR -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) e. dom vol ) |
208 |
204 207
|
eqeltrid |
|- ( x e. RR -> ( S " { x } ) e. dom vol ) |
209 |
|
fvimacnv |
|- ( ( Fun vol /\ ( S " { x } ) e. dom vol ) -> ( ( vol ` ( S " { x } ) ) e. RR <-> ( S " { x } ) e. ( `' vol " RR ) ) ) |
210 |
199 208 209
|
sylancr |
|- ( x e. RR -> ( ( vol ` ( S " { x } ) ) e. RR <-> ( S " { x } ) e. ( `' vol " RR ) ) ) |
211 |
196 210
|
mpbid |
|- ( x e. RR -> ( S " { x } ) e. ( `' vol " RR ) ) |
212 |
211
|
rgen |
|- A. x e. RR ( S " { x } ) e. ( `' vol " RR ) |
213 |
14
|
a1i |
|- ( 0 e. RR -> ( A [,] B ) C_ RR ) |
214 |
|
rembl |
|- RR e. dom vol |
215 |
214
|
a1i |
|- ( 0 e. RR -> RR e. dom vol ) |
216 |
116 115
|
resubcld |
|- ( x e. ( A [,] B ) -> ( V - U ) e. RR ) |
217 |
172 216
|
eqeltrd |
|- ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) e. RR ) |
218 |
217
|
adantl |
|- ( ( 0 e. RR /\ x e. ( A [,] B ) ) -> ( vol ` ( S " { x } ) ) e. RR ) |
219 |
|
eldifn |
|- ( x e. ( RR \ ( A [,] B ) ) -> -. x e. ( A [,] B ) ) |
220 |
219 188
|
syl |
|- ( x e. ( RR \ ( A [,] B ) ) -> ( vol ` ( S " { x } ) ) = 0 ) |
221 |
220
|
adantl |
|- ( ( 0 e. RR /\ x e. ( RR \ ( A [,] B ) ) ) -> ( vol ` ( S " { x } ) ) = 0 ) |
222 |
172
|
mpteq2ia |
|- ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) = ( x e. ( A [,] B ) |-> ( V - U ) ) |
223 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
224 |
223
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
225 |
224
|
a1i |
|- ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
226 |
11
|
mpteq2i |
|- ( x e. ( A [,] B ) |-> V ) = ( x e. ( A [,] B ) |-> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) |
227 |
223
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
228 |
227
|
a1i |
|- ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
229 |
|
ax-resscn |
|- RR C_ CC |
230 |
14 229
|
sstri |
|- ( A [,] B ) C_ CC |
231 |
|
ssid |
|- CC C_ CC |
232 |
|
cncfmptc |
|- ( ( E e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) |
233 |
63 230 231 232
|
mp3an |
|- ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) |
234 |
233
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) |
235 |
230
|
sseli |
|- ( x e. ( A [,] B ) -> x e. CC ) |
236 |
141
|
a1i |
|- ( x e. ( A [,] B ) -> A e. CC ) |
237 |
149
|
a1i |
|- ( x e. ( A [,] B ) -> ( B - A ) e. CC ) |
238 |
29
|
a1i |
|- ( x e. ( A [,] B ) -> ( B - A ) =/= 0 ) |
239 |
235 236 237 238
|
divsubdird |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) = ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) |
240 |
239
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( ( x - A ) / ( B - A ) ) = ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) |
241 |
240
|
mpteq2dva |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) = ( x e. ( A [,] B ) |-> ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) ) |
242 |
|
resmpt |
|- ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) ) |
243 |
230 242
|
ax-mp |
|- ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) |
244 |
|
eqid |
|- ( x e. CC |-> ( x / ( B - A ) ) ) = ( x e. CC |-> ( x / ( B - A ) ) ) |
245 |
244
|
divccncf |
|- ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) ) |
246 |
149 29 245
|
mp2an |
|- ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) |
247 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
248 |
230 246 247
|
mp2 |
|- ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) |
249 |
243 248
|
eqeltrri |
|- ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) |
250 |
249
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
251 |
141 149 29
|
divcli |
|- ( A / ( B - A ) ) e. CC |
252 |
|
cncfmptc |
|- ( ( ( A / ( B - A ) ) e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
253 |
251 230 231 252
|
mp3an |
|- ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) |
254 |
253
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
255 |
223 225 250 254
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
256 |
241 255
|
eqeltrd |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
257 |
|
cncfmptc |
|- ( ( F e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) ) |
258 |
65 230 231 257
|
mp3an |
|- ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) |
259 |
258
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) ) |
260 |
223 225 259 234
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( F - E ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
261 |
256 260
|
mulcncf |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
262 |
223 228 234 261
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
263 |
226 262
|
eqeltrid |
|- ( T. -> ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) ) |
264 |
10
|
mpteq2i |
|- ( x e. ( A [,] B ) |-> U ) = ( x e. ( A [,] B ) |-> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) |
265 |
|
cncfmptc |
|- ( ( C e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) |
266 |
17 230 231 265
|
mp3an |
|- ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) |
267 |
266
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) |
268 |
|
cncfmptc |
|- ( ( D e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) ) |
269 |
33 230 231 268
|
mp3an |
|- ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) |
270 |
269
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) ) |
271 |
223 225 270 267
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( D - C ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
272 |
256 271
|
mulcncf |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
273 |
223 228 267 272
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
274 |
264 273
|
eqeltrid |
|- ( T. -> ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) ) |
275 |
223 225 263 274
|
cncfmpt2f |
|- ( T. -> ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
276 |
275
|
mptru |
|- ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) |
277 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( V - U ) ) e. L^1 ) |
278 |
1 2 276 277
|
mp3an |
|- ( x e. ( A [,] B ) |-> ( V - U ) ) e. L^1 |
279 |
222 278
|
eqeltri |
|- ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) e. L^1 |
280 |
279
|
a1i |
|- ( 0 e. RR -> ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) |
281 |
213 215 218 221 280
|
iblss2 |
|- ( 0 e. RR -> ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) |
282 |
193 281
|
ax-mp |
|- ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 |
283 |
|
dmarea |
|- ( S e. dom area <-> ( S C_ ( RR X. RR ) /\ A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) ) |
284 |
98 212 282 283
|
mpbir3an |
|- S e. dom area |
285 |
|
areaval |
|- ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x ) |
286 |
284 285
|
ax-mp |
|- ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x |
287 |
|
itgeq2 |
|- ( A. x e. RR ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) -> S. RR ( vol ` ( S " { x } ) ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x ) |
288 |
191
|
a1i |
|- ( x e. RR -> ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) ) |
289 |
287 288
|
mprg |
|- S. RR ( vol ` ( S " { x } ) ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x |
290 |
|
itgss2 |
|- ( ( A [,] B ) C_ RR -> S. ( A [,] B ) ( V - U ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x ) |
291 |
14 290
|
ax-mp |
|- S. ( A [,] B ) ( V - U ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x |
292 |
65 63
|
addcli |
|- ( F + E ) e. CC |
293 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
294 |
|
div32 |
|- ( ( ( F + E ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( F + E ) / 2 ) x. ( B - A ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) ) |
295 |
292 293 149 294
|
mp3an |
|- ( ( ( F + E ) / 2 ) x. ( B - A ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) |
296 |
33 17
|
addcli |
|- ( D + C ) e. CC |
297 |
|
div32 |
|- ( ( ( D + C ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( D + C ) / 2 ) x. ( B - A ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) |
298 |
296 293 149 297
|
mp3an |
|- ( ( ( D + C ) / 2 ) x. ( B - A ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) |
299 |
295 298
|
oveq12i |
|- ( ( ( ( F + E ) / 2 ) x. ( B - A ) ) - ( ( ( D + C ) / 2 ) x. ( B - A ) ) ) = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) |
300 |
|
2cn |
|- 2 e. CC |
301 |
|
2ne0 |
|- 2 =/= 0 |
302 |
292 300 301
|
divcli |
|- ( ( F + E ) / 2 ) e. CC |
303 |
296 300 301
|
divcli |
|- ( ( D + C ) / 2 ) e. CC |
304 |
302 303 149
|
subdiri |
|- ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) = ( ( ( ( F + E ) / 2 ) x. ( B - A ) ) - ( ( ( D + C ) / 2 ) x. ( B - A ) ) ) |
305 |
116
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> V e. RR ) |
306 |
263
|
mptru |
|- ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) |
307 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> V ) e. L^1 ) |
308 |
1 2 306 307
|
mp3an |
|- ( x e. ( A [,] B ) |-> V ) e. L^1 |
309 |
308
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> V ) e. L^1 ) |
310 |
115
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> U e. RR ) |
311 |
274
|
mptru |
|- ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) |
312 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> U ) e. L^1 ) |
313 |
1 2 311 312
|
mp3an |
|- ( x e. ( A [,] B ) |-> U ) e. L^1 |
314 |
313
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> U ) e. L^1 ) |
315 |
305 309 310 314
|
itgsub |
|- ( T. -> S. ( A [,] B ) ( V - U ) _d x = ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) ) |
316 |
315
|
mptru |
|- S. ( A [,] B ) ( V - U ) _d x = ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) |
317 |
63 300 301
|
divcan4i |
|- ( ( E x. 2 ) / 2 ) = E |
318 |
317
|
oveq1i |
|- ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( E x. ( B - A ) ) |
319 |
63 300
|
mulcli |
|- ( E x. 2 ) e. CC |
320 |
|
div32 |
|- ( ( ( E x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) ) |
321 |
319 293 149 320
|
mp3an |
|- ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) |
322 |
318 321
|
eqtr3i |
|- ( E x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) |
323 |
322
|
oveq1i |
|- ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) = ( ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) |
324 |
|
itgeq2 |
|- ( A. x e. ( A [,] B ) V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) -> S. ( A [,] B ) V _d x = S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x ) |
325 |
11
|
a1i |
|- ( x e. ( A [,] B ) -> V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) |
326 |
324 325
|
mprg |
|- S. ( A [,] B ) V _d x = S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x |
327 |
5
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> E e. RR ) |
328 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> E ) e. L^1 ) |
329 |
1 2 233 328
|
mp3an |
|- ( x e. ( A [,] B ) |-> E ) e. L^1 |
330 |
329
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> E ) e. L^1 ) |
331 |
128
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( ( x - A ) / ( B - A ) ) e. RR ) |
332 |
6
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> F e. RR ) |
333 |
332 327
|
resubcld |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( F - E ) e. RR ) |
334 |
331 333
|
remulcld |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) e. RR ) |
335 |
261
|
mptru |
|- ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) |
336 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 ) |
337 |
1 2 335 336
|
mp3an |
|- ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 |
338 |
337
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 ) |
339 |
327 330 334 338
|
itgadd |
|- ( T. -> S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x = ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) ) |
340 |
339
|
mptru |
|- S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x = ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) |
341 |
|
iccmbl |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
342 |
1 2 341
|
mp2an |
|- ( A [,] B ) e. dom vol |
343 |
|
mblvol |
|- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
344 |
342 343
|
ax-mp |
|- ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) |
345 |
1 2 7
|
ltleii |
|- A <_ B |
346 |
|
ovolicc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
347 |
1 2 345 346
|
mp3an |
|- ( vol* ` ( A [,] B ) ) = ( B - A ) |
348 |
344 347
|
eqtri |
|- ( vol ` ( A [,] B ) ) = ( B - A ) |
349 |
348 21
|
eqeltri |
|- ( vol ` ( A [,] B ) ) e. RR |
350 |
|
itgconst |
|- ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ E e. CC ) -> S. ( A [,] B ) E _d x = ( E x. ( vol ` ( A [,] B ) ) ) ) |
351 |
342 349 63 350
|
mp3an |
|- S. ( A [,] B ) E _d x = ( E x. ( vol ` ( A [,] B ) ) ) |
352 |
348
|
oveq2i |
|- ( E x. ( vol ` ( A [,] B ) ) ) = ( E x. ( B - A ) ) |
353 |
351 352
|
eqtri |
|- S. ( A [,] B ) E _d x = ( E x. ( B - A ) ) |
354 |
65
|
a1i |
|- ( T. -> F e. CC ) |
355 |
63
|
a1i |
|- ( T. -> E e. CC ) |
356 |
354 355
|
subcld |
|- ( T. -> ( F - E ) e. CC ) |
357 |
256
|
mptru |
|- ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) |
358 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 ) |
359 |
1 2 357 358
|
mp3an |
|- ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 |
360 |
359
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 ) |
361 |
356 331 360
|
itgmulc2 |
|- ( T. -> ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x ) |
362 |
361
|
mptru |
|- ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x |
363 |
|
itgeq2 |
|- ( A. x e. ( A [,] B ) ( ( x - A ) / ( B - A ) ) = ( ( 1 / ( B - A ) ) x. ( x - A ) ) -> S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x ) |
364 |
139
|
recnd |
|- ( x e. ( A [,] B ) -> ( x - A ) e. CC ) |
365 |
364 237 238
|
divrec2d |
|- ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) = ( ( 1 / ( B - A ) ) x. ( x - A ) ) ) |
366 |
363 365
|
mprg |
|- S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x |
367 |
15
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> x e. RR ) |
368 |
|
cncfmptid |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) |
369 |
230 231 368
|
mp2an |
|- ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) |
370 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) |
371 |
1 2 369 370
|
mp3an |
|- ( x e. ( A [,] B ) |-> x ) e. L^1 |
372 |
371
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) |
373 |
1
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> A e. RR ) |
374 |
|
cncfmptc |
|- ( ( A e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) ) |
375 |
141 230 231 374
|
mp3an |
|- ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) |
376 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> A ) e. L^1 ) |
377 |
1 2 375 376
|
mp3an |
|- ( x e. ( A [,] B ) |-> A ) e. L^1 |
378 |
377
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> A ) e. L^1 ) |
379 |
367 372 373 378
|
itgsub |
|- ( T. -> S. ( A [,] B ) ( x - A ) _d x = ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) ) |
380 |
379
|
mptru |
|- S. ( A [,] B ) ( x - A ) _d x = ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) |
381 |
1
|
a1i |
|- ( T. -> A e. RR ) |
382 |
2
|
a1i |
|- ( T. -> B e. RR ) |
383 |
345
|
a1i |
|- ( T. -> A <_ B ) |
384 |
|
1nn0 |
|- 1 e. NN0 |
385 |
384
|
a1i |
|- ( T. -> 1 e. NN0 ) |
386 |
381 382 383 385
|
itgpowd |
|- ( T. -> S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) ) |
387 |
386
|
mptru |
|- S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) |
388 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
389 |
388
|
oveq2i |
|- ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) |
390 |
387 389
|
eqtri |
|- S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) |
391 |
|
itgeq2 |
|- ( A. x e. ( A [,] B ) ( x ^ 1 ) = x -> S. ( A [,] B ) ( x ^ 1 ) _d x = S. ( A [,] B ) x _d x ) |
392 |
235
|
exp1d |
|- ( x e. ( A [,] B ) -> ( x ^ 1 ) = x ) |
393 |
391 392
|
mprg |
|- S. ( A [,] B ) ( x ^ 1 ) _d x = S. ( A [,] B ) x _d x |
394 |
388
|
oveq2i |
|- ( B ^ ( 1 + 1 ) ) = ( B ^ 2 ) |
395 |
388
|
oveq2i |
|- ( A ^ ( 1 + 1 ) ) = ( A ^ 2 ) |
396 |
394 395
|
oveq12i |
|- ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) = ( ( B ^ 2 ) - ( A ^ 2 ) ) |
397 |
396
|
oveq1i |
|- ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) = ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) |
398 |
390 393 397
|
3eqtr3i |
|- S. ( A [,] B ) x _d x = ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) |
399 |
|
itgconst |
|- ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ A e. CC ) -> S. ( A [,] B ) A _d x = ( A x. ( vol ` ( A [,] B ) ) ) ) |
400 |
342 349 141 399
|
mp3an |
|- S. ( A [,] B ) A _d x = ( A x. ( vol ` ( A [,] B ) ) ) |
401 |
348
|
oveq2i |
|- ( A x. ( vol ` ( A [,] B ) ) ) = ( A x. ( B - A ) ) |
402 |
400 401
|
eqtri |
|- S. ( A [,] B ) A _d x = ( A x. ( B - A ) ) |
403 |
398 402
|
oveq12i |
|- ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) = ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) |
404 |
380 403
|
eqtri |
|- S. ( A [,] B ) ( x - A ) _d x = ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) |
405 |
404
|
oveq2i |
|- ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = ( ( 1 / ( B - A ) ) x. ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) ) |
406 |
23
|
a1i |
|- ( T. -> B e. CC ) |
407 |
141
|
a1i |
|- ( T. -> A e. CC ) |
408 |
406 407
|
subcld |
|- ( T. -> ( B - A ) e. CC ) |
409 |
26
|
a1i |
|- ( T. -> B =/= A ) |
410 |
406 407 409
|
subne0d |
|- ( T. -> ( B - A ) =/= 0 ) |
411 |
408 410
|
reccld |
|- ( T. -> ( 1 / ( B - A ) ) e. CC ) |
412 |
411
|
mptru |
|- ( 1 / ( B - A ) ) e. CC |
413 |
23
|
sqcli |
|- ( B ^ 2 ) e. CC |
414 |
141
|
sqcli |
|- ( A ^ 2 ) e. CC |
415 |
413 414
|
subcli |
|- ( ( B ^ 2 ) - ( A ^ 2 ) ) e. CC |
416 |
415 300 301
|
divcli |
|- ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) e. CC |
417 |
141 149
|
mulcli |
|- ( A x. ( B - A ) ) e. CC |
418 |
412 416 417
|
subdii |
|- ( ( 1 / ( B - A ) ) x. ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) |
419 |
405 418
|
eqtri |
|- ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) |
420 |
139
|
adantl |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( x - A ) e. RR ) |
421 |
367 372 373 378
|
iblsub |
|- ( T. -> ( x e. ( A [,] B ) |-> ( x - A ) ) e. L^1 ) |
422 |
411 420 421
|
itgmulc2 |
|- ( T. -> ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x ) |
423 |
422
|
mptru |
|- ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x |
424 |
412 417
|
mulcomi |
|- ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) = ( ( A x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) |
425 |
417 149 29
|
divreci |
|- ( ( A x. ( B - A ) ) / ( B - A ) ) = ( ( A x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) |
426 |
141 149 29
|
divcan4i |
|- ( ( A x. ( B - A ) ) / ( B - A ) ) = A |
427 |
424 425 426
|
3eqtr2i |
|- ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) = A |
428 |
427
|
oveq2i |
|- ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) |
429 |
419 423 428
|
3eqtr3i |
|- S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) |
430 |
366 429
|
eqtri |
|- S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) |
431 |
23 141
|
subsqi |
|- ( ( B ^ 2 ) - ( A ^ 2 ) ) = ( ( B + A ) x. ( B - A ) ) |
432 |
431
|
oveq1i |
|- ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) = ( ( ( B + A ) x. ( B - A ) ) / 2 ) |
433 |
432
|
oveq2i |
|- ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) = ( ( 1 / ( B - A ) ) x. ( ( ( B + A ) x. ( B - A ) ) / 2 ) ) |
434 |
431 415
|
eqeltrri |
|- ( ( B + A ) x. ( B - A ) ) e. CC |
435 |
412 434 300 301
|
divassi |
|- ( ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) / 2 ) = ( ( 1 / ( B - A ) ) x. ( ( ( B + A ) x. ( B - A ) ) / 2 ) ) |
436 |
412 434
|
mulcomi |
|- ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) = ( ( ( B + A ) x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) |
437 |
434 149 29
|
divreci |
|- ( ( ( B + A ) x. ( B - A ) ) / ( B - A ) ) = ( ( ( B + A ) x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) |
438 |
23 141
|
addcli |
|- ( B + A ) e. CC |
439 |
438 149 29
|
divcan4i |
|- ( ( ( B + A ) x. ( B - A ) ) / ( B - A ) ) = ( B + A ) |
440 |
436 437 439
|
3eqtr2i |
|- ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) = ( B + A ) |
441 |
440
|
oveq1i |
|- ( ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) / 2 ) = ( ( B + A ) / 2 ) |
442 |
433 435 441
|
3eqtr2i |
|- ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) = ( ( B + A ) / 2 ) |
443 |
442
|
oveq1i |
|- ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) = ( ( ( B + A ) / 2 ) - A ) |
444 |
141 300
|
mulcli |
|- ( A x. 2 ) e. CC |
445 |
|
divsubdir |
|- ( ( ( B + A ) e. CC /\ ( A x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) ) |
446 |
438 444 293 445
|
mp3an |
|- ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) |
447 |
23 141 444
|
addsubassi |
|- ( ( B + A ) - ( A x. 2 ) ) = ( B + ( A - ( A x. 2 ) ) ) |
448 |
|
subsub2 |
|- ( ( B e. CC /\ ( A x. 2 ) e. CC /\ A e. CC ) -> ( B - ( ( A x. 2 ) - A ) ) = ( B + ( A - ( A x. 2 ) ) ) ) |
449 |
23 444 141 448
|
mp3an |
|- ( B - ( ( A x. 2 ) - A ) ) = ( B + ( A - ( A x. 2 ) ) ) |
450 |
141
|
times2i |
|- ( A x. 2 ) = ( A + A ) |
451 |
450
|
oveq1i |
|- ( ( A x. 2 ) - A ) = ( ( A + A ) - A ) |
452 |
141 141
|
pncan3oi |
|- ( ( A + A ) - A ) = A |
453 |
451 452
|
eqtri |
|- ( ( A x. 2 ) - A ) = A |
454 |
453
|
oveq2i |
|- ( B - ( ( A x. 2 ) - A ) ) = ( B - A ) |
455 |
447 449 454
|
3eqtr2i |
|- ( ( B + A ) - ( A x. 2 ) ) = ( B - A ) |
456 |
455
|
oveq1i |
|- ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( B - A ) / 2 ) |
457 |
141 300 301
|
divcan4i |
|- ( ( A x. 2 ) / 2 ) = A |
458 |
457
|
oveq2i |
|- ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) = ( ( ( B + A ) / 2 ) - A ) |
459 |
446 456 458
|
3eqtr3ri |
|- ( ( ( B + A ) / 2 ) - A ) = ( ( B - A ) / 2 ) |
460 |
430 443 459
|
3eqtri |
|- S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = ( ( B - A ) / 2 ) |
461 |
460
|
oveq2i |
|- ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = ( ( F - E ) x. ( ( B - A ) / 2 ) ) |
462 |
|
itgeq2 |
|- ( A. x e. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) -> S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) |
463 |
65 63
|
subcli |
|- ( F - E ) e. CC |
464 |
463
|
a1i |
|- ( x e. ( A [,] B ) -> ( F - E ) e. CC ) |
465 |
464 129
|
mulcomd |
|- ( x e. ( A [,] B ) -> ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) |
466 |
462 465
|
mprg |
|- S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x |
467 |
362 461 466
|
3eqtr3ri |
|- S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x = ( ( F - E ) x. ( ( B - A ) / 2 ) ) |
468 |
353 467
|
oveq12i |
|- ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) = ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) |
469 |
326 340 468
|
3eqtri |
|- S. ( A [,] B ) V _d x = ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) |
470 |
149 300 301
|
divcli |
|- ( ( B - A ) / 2 ) e. CC |
471 |
319 463 470
|
adddiri |
|- ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) = ( ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) |
472 |
323 469 471
|
3eqtr4i |
|- S. ( A [,] B ) V _d x = ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) |
473 |
|
addsub12 |
|- ( ( F e. CC /\ ( E x. 2 ) e. CC /\ E e. CC ) -> ( F + ( ( E x. 2 ) - E ) ) = ( ( E x. 2 ) + ( F - E ) ) ) |
474 |
65 319 63 473
|
mp3an |
|- ( F + ( ( E x. 2 ) - E ) ) = ( ( E x. 2 ) + ( F - E ) ) |
475 |
63
|
times2i |
|- ( E x. 2 ) = ( E + E ) |
476 |
475
|
oveq1i |
|- ( ( E x. 2 ) - E ) = ( ( E + E ) - E ) |
477 |
63 63
|
pncan3oi |
|- ( ( E + E ) - E ) = E |
478 |
476 477
|
eqtri |
|- ( ( E x. 2 ) - E ) = E |
479 |
478
|
oveq2i |
|- ( F + ( ( E x. 2 ) - E ) ) = ( F + E ) |
480 |
474 479
|
eqtr3i |
|- ( ( E x. 2 ) + ( F - E ) ) = ( F + E ) |
481 |
480
|
oveq1i |
|- ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) |
482 |
472 481
|
eqtri |
|- S. ( A [,] B ) V _d x = ( ( F + E ) x. ( ( B - A ) / 2 ) ) |
483 |
17 300 301
|
divcan4i |
|- ( ( C x. 2 ) / 2 ) = C |
484 |
483
|
oveq1i |
|- ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( C x. ( B - A ) ) |
485 |
17 300
|
mulcli |
|- ( C x. 2 ) e. CC |
486 |
|
div32 |
|- ( ( ( C x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) ) |
487 |
485 293 149 486
|
mp3an |
|- ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) |
488 |
484 487
|
eqtr3i |
|- ( C x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) |
489 |
488
|
oveq1i |
|- ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) = ( ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) |
490 |
10
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> U = ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) |
491 |
490
|
itgeq2dv |
|- ( T. -> S. ( A [,] B ) U _d x = S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x ) |
492 |
491
|
mptru |
|- S. ( A [,] B ) U _d x = S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x |
493 |
3
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> C e. RR ) |
494 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> C ) e. L^1 ) |
495 |
1 2 266 494
|
mp3an |
|- ( x e. ( A [,] B ) |-> C ) e. L^1 |
496 |
495
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> C ) e. L^1 ) |
497 |
4
|
a1i |
|- ( ( T. /\ x e. ( A [,] B ) ) -> D e. RR ) |
498 |
497 493
|
resubcld |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( D - C ) e. RR ) |
499 |
331 498
|
remulcld |
|- ( ( T. /\ x e. ( A [,] B ) ) -> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) e. RR ) |
500 |
272
|
mptru |
|- ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) |
501 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 ) |
502 |
1 2 500 501
|
mp3an |
|- ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 |
503 |
502
|
a1i |
|- ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 ) |
504 |
493 496 499 503
|
itgadd |
|- ( T. -> S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x = ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) ) |
505 |
504
|
mptru |
|- S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x = ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) |
506 |
|
itgconst |
|- ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ C e. CC ) -> S. ( A [,] B ) C _d x = ( C x. ( vol ` ( A [,] B ) ) ) ) |
507 |
342 349 17 506
|
mp3an |
|- S. ( A [,] B ) C _d x = ( C x. ( vol ` ( A [,] B ) ) ) |
508 |
348
|
oveq2i |
|- ( C x. ( vol ` ( A [,] B ) ) ) = ( C x. ( B - A ) ) |
509 |
507 508
|
eqtri |
|- S. ( A [,] B ) C _d x = ( C x. ( B - A ) ) |
510 |
33
|
a1i |
|- ( T. -> D e. CC ) |
511 |
17
|
a1i |
|- ( T. -> C e. CC ) |
512 |
510 511
|
subcld |
|- ( T. -> ( D - C ) e. CC ) |
513 |
512 331 360
|
itgmulc2 |
|- ( T. -> ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x ) |
514 |
513
|
mptru |
|- ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x |
515 |
460
|
oveq2i |
|- ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = ( ( D - C ) x. ( ( B - A ) / 2 ) ) |
516 |
|
itgeq2 |
|- ( A. x e. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) -> S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) |
517 |
33 17
|
subcli |
|- ( D - C ) e. CC |
518 |
517
|
a1i |
|- ( x e. ( A [,] B ) -> ( D - C ) e. CC ) |
519 |
518 129
|
mulcomd |
|- ( x e. ( A [,] B ) -> ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) |
520 |
516 519
|
mprg |
|- S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x |
521 |
514 515 520
|
3eqtr3ri |
|- S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x = ( ( D - C ) x. ( ( B - A ) / 2 ) ) |
522 |
509 521
|
oveq12i |
|- ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) = ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) |
523 |
492 505 522
|
3eqtri |
|- S. ( A [,] B ) U _d x = ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) |
524 |
485 517 470
|
adddiri |
|- ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) = ( ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) |
525 |
489 523 524
|
3eqtr4i |
|- S. ( A [,] B ) U _d x = ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) |
526 |
|
addsub12 |
|- ( ( D e. CC /\ ( C x. 2 ) e. CC /\ C e. CC ) -> ( D + ( ( C x. 2 ) - C ) ) = ( ( C x. 2 ) + ( D - C ) ) ) |
527 |
33 485 17 526
|
mp3an |
|- ( D + ( ( C x. 2 ) - C ) ) = ( ( C x. 2 ) + ( D - C ) ) |
528 |
17
|
times2i |
|- ( C x. 2 ) = ( C + C ) |
529 |
528
|
oveq1i |
|- ( ( C x. 2 ) - C ) = ( ( C + C ) - C ) |
530 |
17 17
|
pncan3oi |
|- ( ( C + C ) - C ) = C |
531 |
529 530
|
eqtri |
|- ( ( C x. 2 ) - C ) = C |
532 |
531
|
oveq2i |
|- ( D + ( ( C x. 2 ) - C ) ) = ( D + C ) |
533 |
527 532
|
eqtr3i |
|- ( ( C x. 2 ) + ( D - C ) ) = ( D + C ) |
534 |
533
|
oveq1i |
|- ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) |
535 |
525 534
|
eqtri |
|- S. ( A [,] B ) U _d x = ( ( D + C ) x. ( ( B - A ) / 2 ) ) |
536 |
482 535
|
oveq12i |
|- ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) |
537 |
316 536
|
eqtri |
|- S. ( A [,] B ) ( V - U ) _d x = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) |
538 |
299 304 537
|
3eqtr4ri |
|- S. ( A [,] B ) ( V - U ) _d x = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) |
539 |
289 291 538
|
3eqtr2i |
|- S. RR ( vol ` ( S " { x } ) ) _d x = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) |
540 |
286 539
|
eqtri |
|- ( area ` S ) = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) |