| Step | Hyp | Ref | Expression | 
						
							| 1 |  | areaquad.1 |  |-  A e. RR | 
						
							| 2 |  | areaquad.2 |  |-  B e. RR | 
						
							| 3 |  | areaquad.3 |  |-  C e. RR | 
						
							| 4 |  | areaquad.4 |  |-  D e. RR | 
						
							| 5 |  | areaquad.5 |  |-  E e. RR | 
						
							| 6 |  | areaquad.6 |  |-  F e. RR | 
						
							| 7 |  | areaquad.7 |  |-  A < B | 
						
							| 8 |  | areaquad.8 |  |-  C <_ E | 
						
							| 9 |  | areaquad.9 |  |-  D <_ F | 
						
							| 10 |  | areaquad.10 |  |-  U = ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) | 
						
							| 11 |  | areaquad.11 |  |-  V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) | 
						
							| 12 |  | areaquad.12 |  |-  S = { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } | 
						
							| 13 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 14 | 1 2 13 | mp2an |  |-  ( A [,] B ) C_ RR | 
						
							| 15 | 14 | sseli |  |-  ( x e. ( A [,] B ) -> x e. RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> x e. RR ) | 
						
							| 17 | 3 | recni |  |-  C e. CC | 
						
							| 18 | 17 | a1i |  |-  ( x e. RR -> C e. CC ) | 
						
							| 19 |  | resubcl |  |-  ( ( x e. RR /\ A e. RR ) -> ( x - A ) e. RR ) | 
						
							| 20 | 1 19 | mpan2 |  |-  ( x e. RR -> ( x - A ) e. RR ) | 
						
							| 21 | 2 1 | resubcli |  |-  ( B - A ) e. RR | 
						
							| 22 | 21 | a1i |  |-  ( x e. RR -> ( B - A ) e. RR ) | 
						
							| 23 | 2 | recni |  |-  B e. CC | 
						
							| 24 | 23 | a1i |  |-  ( A e. RR -> B e. CC ) | 
						
							| 25 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 26 | 1 7 | gtneii |  |-  B =/= A | 
						
							| 27 | 26 | a1i |  |-  ( A e. RR -> B =/= A ) | 
						
							| 28 | 24 25 27 | subne0d |  |-  ( A e. RR -> ( B - A ) =/= 0 ) | 
						
							| 29 | 1 28 | ax-mp |  |-  ( B - A ) =/= 0 | 
						
							| 30 | 29 | a1i |  |-  ( x e. RR -> ( B - A ) =/= 0 ) | 
						
							| 31 | 20 22 30 | redivcld |  |-  ( x e. RR -> ( ( x - A ) / ( B - A ) ) e. RR ) | 
						
							| 32 | 31 | recnd |  |-  ( x e. RR -> ( ( x - A ) / ( B - A ) ) e. CC ) | 
						
							| 33 | 4 | recni |  |-  D e. CC | 
						
							| 34 | 33 | a1i |  |-  ( x e. RR -> D e. CC ) | 
						
							| 35 | 32 34 | mulcld |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. D ) e. CC ) | 
						
							| 36 | 32 18 | mulcld |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. C ) e. CC ) | 
						
							| 37 | 18 35 36 | addsub12d |  |-  ( x e. RR -> ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) | 
						
							| 38 | 32 34 18 | subdid |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( x e. RR -> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) = ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) | 
						
							| 40 | 10 39 | eqtrid |  |-  ( x e. RR -> U = ( C + ( ( ( ( x - A ) / ( B - A ) ) x. D ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) | 
						
							| 41 |  | 1cnd |  |-  ( x e. RR -> 1 e. CC ) | 
						
							| 42 | 41 32 18 | subdird |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( ( 1 x. C ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) | 
						
							| 43 | 17 | mullidi |  |-  ( 1 x. C ) = C | 
						
							| 44 | 43 | oveq1i |  |-  ( ( 1 x. C ) - ( ( ( x - A ) / ( B - A ) ) x. C ) ) = ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) | 
						
							| 45 | 42 44 | eqtrdi |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( C - ( ( ( x - A ) / ( B - A ) ) x. C ) ) ) ) | 
						
							| 47 | 37 40 46 | 3eqtr4d |  |-  ( x e. RR -> U = ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) ) | 
						
							| 48 |  | 1red |  |-  ( x e. RR -> 1 e. RR ) | 
						
							| 49 | 48 31 | resubcld |  |-  ( x e. RR -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 50 | 49 | recnd |  |-  ( x e. RR -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. CC ) | 
						
							| 51 | 50 18 | mulcld |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) e. CC ) | 
						
							| 52 | 35 51 | addcomd |  |-  ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. D ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) ) = ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) + ( ( ( x - A ) / ( B - A ) ) x. D ) ) ) | 
						
							| 53 | 50 18 | mulcomd |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) = ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 54 | 32 34 | mulcomd |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. D ) = ( D x. ( ( x - A ) / ( B - A ) ) ) ) | 
						
							| 55 | 53 54 | oveq12d |  |-  ( x e. RR -> ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. C ) + ( ( ( x - A ) / ( B - A ) ) x. D ) ) = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 56 | 47 52 55 | 3eqtrd |  |-  ( x e. RR -> U = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 57 | 3 | a1i |  |-  ( x e. RR -> C e. RR ) | 
						
							| 58 | 57 49 | remulcld |  |-  ( x e. RR -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 59 | 4 | a1i |  |-  ( x e. RR -> D e. RR ) | 
						
							| 60 | 59 31 | remulcld |  |-  ( x e. RR -> ( D x. ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 61 | 58 60 | readdcld |  |-  ( x e. RR -> ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 62 | 56 61 | eqeltrd |  |-  ( x e. RR -> U e. RR ) | 
						
							| 63 | 5 | recni |  |-  E e. CC | 
						
							| 64 | 63 | a1i |  |-  ( x e. RR -> E e. CC ) | 
						
							| 65 | 6 | recni |  |-  F e. CC | 
						
							| 66 | 65 | a1i |  |-  ( x e. RR -> F e. CC ) | 
						
							| 67 | 32 66 | mulcld |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. F ) e. CC ) | 
						
							| 68 | 32 64 | mulcld |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. E ) e. CC ) | 
						
							| 69 | 64 67 68 | addsub12d |  |-  ( x e. RR -> ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) | 
						
							| 70 | 32 66 64 | subdid |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( x e. RR -> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) = ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) | 
						
							| 72 | 11 71 | eqtrid |  |-  ( x e. RR -> V = ( E + ( ( ( ( x - A ) / ( B - A ) ) x. F ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) | 
						
							| 73 | 41 32 64 | subdird |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( ( 1 x. E ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) | 
						
							| 74 | 63 | mullidi |  |-  ( 1 x. E ) = E | 
						
							| 75 | 74 | oveq1i |  |-  ( ( 1 x. E ) - ( ( ( x - A ) / ( B - A ) ) x. E ) ) = ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) | 
						
							| 76 | 73 75 | eqtrdi |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( E - ( ( ( x - A ) / ( B - A ) ) x. E ) ) ) ) | 
						
							| 78 | 69 72 77 | 3eqtr4d |  |-  ( x e. RR -> V = ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) ) | 
						
							| 79 | 50 64 | mulcld |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) e. CC ) | 
						
							| 80 | 67 79 | addcomd |  |-  ( x e. RR -> ( ( ( ( x - A ) / ( B - A ) ) x. F ) + ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) ) = ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) + ( ( ( x - A ) / ( B - A ) ) x. F ) ) ) | 
						
							| 81 | 50 64 | mulcomd |  |-  ( x e. RR -> ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) = ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 82 | 32 66 | mulcomd |  |-  ( x e. RR -> ( ( ( x - A ) / ( B - A ) ) x. F ) = ( F x. ( ( x - A ) / ( B - A ) ) ) ) | 
						
							| 83 | 81 82 | oveq12d |  |-  ( x e. RR -> ( ( ( 1 - ( ( x - A ) / ( B - A ) ) ) x. E ) + ( ( ( x - A ) / ( B - A ) ) x. F ) ) = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 84 | 78 80 83 | 3eqtrd |  |-  ( x e. RR -> V = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 85 | 5 | a1i |  |-  ( x e. RR -> E e. RR ) | 
						
							| 86 | 85 49 | remulcld |  |-  ( x e. RR -> ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 87 | 6 | a1i |  |-  ( x e. RR -> F e. RR ) | 
						
							| 88 | 87 31 | remulcld |  |-  ( x e. RR -> ( F x. ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 89 | 86 88 | readdcld |  |-  ( x e. RR -> ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 90 | 84 89 | eqeltrd |  |-  ( x e. RR -> V e. RR ) | 
						
							| 91 |  | iccssre |  |-  ( ( U e. RR /\ V e. RR ) -> ( U [,] V ) C_ RR ) | 
						
							| 92 | 62 90 91 | syl2anc |  |-  ( x e. RR -> ( U [,] V ) C_ RR ) | 
						
							| 93 | 15 92 | syl |  |-  ( x e. ( A [,] B ) -> ( U [,] V ) C_ RR ) | 
						
							| 94 | 93 | sselda |  |-  ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> y e. RR ) | 
						
							| 95 | 16 94 | jca |  |-  ( ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) -> ( x e. RR /\ y e. RR ) ) | 
						
							| 96 | 95 | ssopab2i |  |-  { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } C_ { <. x , y >. | ( x e. RR /\ y e. RR ) } | 
						
							| 97 |  | df-xp |  |-  ( RR X. RR ) = { <. x , y >. | ( x e. RR /\ y e. RR ) } | 
						
							| 98 | 96 12 97 | 3sstr4i |  |-  S C_ ( RR X. RR ) | 
						
							| 99 |  | iftrue |  |-  ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( V - U ) ) | 
						
							| 100 |  | nfv |  |-  F/ y x e. ( A [,] B ) | 
						
							| 101 |  | nfopab2 |  |-  F/_ y { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } | 
						
							| 102 | 12 101 | nfcxfr |  |-  F/_ y S | 
						
							| 103 |  | nfcv |  |-  F/_ y { x } | 
						
							| 104 | 102 103 | nfima |  |-  F/_ y ( S " { x } ) | 
						
							| 105 |  | nfcv |  |-  F/_ y ( U [,] V ) | 
						
							| 106 |  | vex |  |-  x e. _V | 
						
							| 107 |  | vex |  |-  y e. _V | 
						
							| 108 | 106 107 | elimasn |  |-  ( y e. ( S " { x } ) <-> <. x , y >. e. S ) | 
						
							| 109 | 12 | eleq2i |  |-  ( <. x , y >. e. S <-> <. x , y >. e. { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } ) | 
						
							| 110 |  | opabidw |  |-  ( <. x , y >. e. { <. x , y >. | ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) } <-> ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) ) | 
						
							| 111 | 108 109 110 | 3bitri |  |-  ( y e. ( S " { x } ) <-> ( x e. ( A [,] B ) /\ y e. ( U [,] V ) ) ) | 
						
							| 112 | 111 | baib |  |-  ( x e. ( A [,] B ) -> ( y e. ( S " { x } ) <-> y e. ( U [,] V ) ) ) | 
						
							| 113 | 100 104 105 112 | eqrd |  |-  ( x e. ( A [,] B ) -> ( S " { x } ) = ( U [,] V ) ) | 
						
							| 114 | 113 | fveq2d |  |-  ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( vol ` ( U [,] V ) ) ) | 
						
							| 115 | 15 62 | syl |  |-  ( x e. ( A [,] B ) -> U e. RR ) | 
						
							| 116 | 15 90 | syl |  |-  ( x e. ( A [,] B ) -> V e. RR ) | 
						
							| 117 |  | iccmbl |  |-  ( ( U e. RR /\ V e. RR ) -> ( U [,] V ) e. dom vol ) | 
						
							| 118 | 115 116 117 | syl2anc |  |-  ( x e. ( A [,] B ) -> ( U [,] V ) e. dom vol ) | 
						
							| 119 |  | mblvol |  |-  ( ( U [,] V ) e. dom vol -> ( vol ` ( U [,] V ) ) = ( vol* ` ( U [,] V ) ) ) | 
						
							| 120 | 118 119 | syl |  |-  ( x e. ( A [,] B ) -> ( vol ` ( U [,] V ) ) = ( vol* ` ( U [,] V ) ) ) | 
						
							| 121 | 15 58 | syl |  |-  ( x e. ( A [,] B ) -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 122 | 15 60 | syl |  |-  ( x e. ( A [,] B ) -> ( D x. ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 123 | 15 86 | syl |  |-  ( x e. ( A [,] B ) -> ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) e. RR ) | 
						
							| 124 | 15 88 | syl |  |-  ( x e. ( A [,] B ) -> ( F x. ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 125 | 3 | a1i |  |-  ( x e. ( A [,] B ) -> C e. RR ) | 
						
							| 126 | 5 | a1i |  |-  ( x e. ( A [,] B ) -> E e. RR ) | 
						
							| 127 | 15 49 | syl |  |-  ( x e. ( A [,] B ) -> ( 1 - ( ( x - A ) / ( B - A ) ) ) e. RR ) | 
						
							| 128 | 15 31 | syl |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) e. RR ) | 
						
							| 129 | 128 | recnd |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) e. CC ) | 
						
							| 130 | 129 | subidd |  |-  ( x e. ( A [,] B ) -> ( ( ( x - A ) / ( B - A ) ) - ( ( x - A ) / ( B - A ) ) ) = 0 ) | 
						
							| 131 |  | 1red |  |-  ( x e. ( A [,] B ) -> 1 e. RR ) | 
						
							| 132 | 2 | a1i |  |-  ( x e. ( A [,] B ) -> B e. RR ) | 
						
							| 133 | 1 | a1i |  |-  ( x e. ( A [,] B ) -> A e. RR ) | 
						
							| 134 | 1 | rexri |  |-  A e. RR* | 
						
							| 135 | 2 | rexri |  |-  B e. RR* | 
						
							| 136 |  | iccleub |  |-  ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) | 
						
							| 137 | 134 135 136 | mp3an12 |  |-  ( x e. ( A [,] B ) -> x <_ B ) | 
						
							| 138 | 15 132 133 137 | lesub1dd |  |-  ( x e. ( A [,] B ) -> ( x - A ) <_ ( B - A ) ) | 
						
							| 139 | 15 1 19 | sylancl |  |-  ( x e. ( A [,] B ) -> ( x - A ) e. RR ) | 
						
							| 140 | 21 | a1i |  |-  ( x e. ( A [,] B ) -> ( B - A ) e. RR ) | 
						
							| 141 | 1 | recni |  |-  A e. CC | 
						
							| 142 | 141 | subidi |  |-  ( A - A ) = 0 | 
						
							| 143 | 133 132 133 | ltsub1d |  |-  ( x e. ( A [,] B ) -> ( A < B <-> ( A - A ) < ( B - A ) ) ) | 
						
							| 144 | 7 143 | mpbii |  |-  ( x e. ( A [,] B ) -> ( A - A ) < ( B - A ) ) | 
						
							| 145 | 142 144 | eqbrtrrid |  |-  ( x e. ( A [,] B ) -> 0 < ( B - A ) ) | 
						
							| 146 |  | lediv1 |  |-  ( ( ( x - A ) e. RR /\ ( B - A ) e. RR /\ ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) -> ( ( x - A ) <_ ( B - A ) <-> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) ) | 
						
							| 147 | 139 140 140 145 146 | syl112anc |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) <_ ( B - A ) <-> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) ) | 
						
							| 148 | 138 147 | mpbid |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) <_ ( ( B - A ) / ( B - A ) ) ) | 
						
							| 149 | 21 | recni |  |-  ( B - A ) e. CC | 
						
							| 150 | 149 29 | dividi |  |-  ( ( B - A ) / ( B - A ) ) = 1 | 
						
							| 151 | 148 150 | breqtrdi |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) <_ 1 ) | 
						
							| 152 | 128 131 128 151 | lesub1dd |  |-  ( x e. ( A [,] B ) -> ( ( ( x - A ) / ( B - A ) ) - ( ( x - A ) / ( B - A ) ) ) <_ ( 1 - ( ( x - A ) / ( B - A ) ) ) ) | 
						
							| 153 | 130 152 | eqbrtrrd |  |-  ( x e. ( A [,] B ) -> 0 <_ ( 1 - ( ( x - A ) / ( B - A ) ) ) ) | 
						
							| 154 | 8 | a1i |  |-  ( x e. ( A [,] B ) -> C <_ E ) | 
						
							| 155 | 125 126 127 153 154 | lemul1ad |  |-  ( x e. ( A [,] B ) -> ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) <_ ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 156 | 4 | a1i |  |-  ( x e. ( A [,] B ) -> D e. RR ) | 
						
							| 157 | 6 | a1i |  |-  ( x e. ( A [,] B ) -> F e. RR ) | 
						
							| 158 | 140 145 | elrpd |  |-  ( x e. ( A [,] B ) -> ( B - A ) e. RR+ ) | 
						
							| 159 |  | iccgelb |  |-  ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) | 
						
							| 160 | 134 135 159 | mp3an12 |  |-  ( x e. ( A [,] B ) -> A <_ x ) | 
						
							| 161 | 133 15 133 160 | lesub1dd |  |-  ( x e. ( A [,] B ) -> ( A - A ) <_ ( x - A ) ) | 
						
							| 162 | 142 161 | eqbrtrrid |  |-  ( x e. ( A [,] B ) -> 0 <_ ( x - A ) ) | 
						
							| 163 | 139 158 162 | divge0d |  |-  ( x e. ( A [,] B ) -> 0 <_ ( ( x - A ) / ( B - A ) ) ) | 
						
							| 164 | 9 | a1i |  |-  ( x e. ( A [,] B ) -> D <_ F ) | 
						
							| 165 | 156 157 128 163 164 | lemul1ad |  |-  ( x e. ( A [,] B ) -> ( D x. ( ( x - A ) / ( B - A ) ) ) <_ ( F x. ( ( x - A ) / ( B - A ) ) ) ) | 
						
							| 166 | 121 122 123 124 155 165 | le2addd |  |-  ( x e. ( A [,] B ) -> ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) <_ ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 167 | 15 56 | syl |  |-  ( x e. ( A [,] B ) -> U = ( ( C x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( D x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 168 | 15 84 | syl |  |-  ( x e. ( A [,] B ) -> V = ( ( E x. ( 1 - ( ( x - A ) / ( B - A ) ) ) ) + ( F x. ( ( x - A ) / ( B - A ) ) ) ) ) | 
						
							| 169 | 166 167 168 | 3brtr4d |  |-  ( x e. ( A [,] B ) -> U <_ V ) | 
						
							| 170 |  | ovolicc |  |-  ( ( U e. RR /\ V e. RR /\ U <_ V ) -> ( vol* ` ( U [,] V ) ) = ( V - U ) ) | 
						
							| 171 | 115 116 169 170 | syl3anc |  |-  ( x e. ( A [,] B ) -> ( vol* ` ( U [,] V ) ) = ( V - U ) ) | 
						
							| 172 | 114 120 171 | 3eqtrd |  |-  ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( V - U ) ) | 
						
							| 173 | 99 172 | eqtr4d |  |-  ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) ) | 
						
							| 174 |  | iffalse |  |-  ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = 0 ) | 
						
							| 175 |  | nfv |  |-  F/ y -. x e. ( A [,] B ) | 
						
							| 176 |  | nfcv |  |-  F/_ y (/) | 
						
							| 177 | 111 | simplbi |  |-  ( y e. ( S " { x } ) -> x e. ( A [,] B ) ) | 
						
							| 178 |  | noel |  |-  -. y e. (/) | 
						
							| 179 | 178 | pm2.21i |  |-  ( y e. (/) -> x e. ( A [,] B ) ) | 
						
							| 180 | 177 179 | pm5.21ni |  |-  ( -. x e. ( A [,] B ) -> ( y e. ( S " { x } ) <-> y e. (/) ) ) | 
						
							| 181 | 175 104 176 180 | eqrd |  |-  ( -. x e. ( A [,] B ) -> ( S " { x } ) = (/) ) | 
						
							| 182 | 181 | fveq2d |  |-  ( -. x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = ( vol ` (/) ) ) | 
						
							| 183 |  | 0mbl |  |-  (/) e. dom vol | 
						
							| 184 |  | mblvol |  |-  ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) | 
						
							| 185 | 183 184 | ax-mp |  |-  ( vol ` (/) ) = ( vol* ` (/) ) | 
						
							| 186 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 187 | 185 186 | eqtri |  |-  ( vol ` (/) ) = 0 | 
						
							| 188 | 182 187 | eqtrdi |  |-  ( -. x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) = 0 ) | 
						
							| 189 | 174 188 | eqtr4d |  |-  ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) ) | 
						
							| 190 | 173 189 | pm2.61i |  |-  if ( x e. ( A [,] B ) , ( V - U ) , 0 ) = ( vol ` ( S " { x } ) ) | 
						
							| 191 | 190 | eqcomi |  |-  ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) | 
						
							| 192 | 90 62 | resubcld |  |-  ( x e. RR -> ( V - U ) e. RR ) | 
						
							| 193 |  | 0re |  |-  0 e. RR | 
						
							| 194 |  | ifcl |  |-  ( ( ( V - U ) e. RR /\ 0 e. RR ) -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) e. RR ) | 
						
							| 195 | 192 193 194 | sylancl |  |-  ( x e. RR -> if ( x e. ( A [,] B ) , ( V - U ) , 0 ) e. RR ) | 
						
							| 196 | 191 195 | eqeltrid |  |-  ( x e. RR -> ( vol ` ( S " { x } ) ) e. RR ) | 
						
							| 197 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 198 |  | ffun |  |-  ( vol : dom vol --> ( 0 [,] +oo ) -> Fun vol ) | 
						
							| 199 | 197 198 | ax-mp |  |-  Fun vol | 
						
							| 200 |  | iftrue |  |-  ( x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) = ( U [,] V ) ) | 
						
							| 201 | 113 200 | eqtr4d |  |-  ( x e. ( A [,] B ) -> ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) ) | 
						
							| 202 |  | iffalse |  |-  ( -. x e. ( A [,] B ) -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) = (/) ) | 
						
							| 203 | 181 202 | eqtr4d |  |-  ( -. x e. ( A [,] B ) -> ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) ) | 
						
							| 204 | 201 203 | pm2.61i |  |-  ( S " { x } ) = if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) | 
						
							| 205 | 62 90 117 | syl2anc |  |-  ( x e. RR -> ( U [,] V ) e. dom vol ) | 
						
							| 206 | 183 | a1i |  |-  ( x e. RR -> (/) e. dom vol ) | 
						
							| 207 | 205 206 | ifcld |  |-  ( x e. RR -> if ( x e. ( A [,] B ) , ( U [,] V ) , (/) ) e. dom vol ) | 
						
							| 208 | 204 207 | eqeltrid |  |-  ( x e. RR -> ( S " { x } ) e. dom vol ) | 
						
							| 209 |  | fvimacnv |  |-  ( ( Fun vol /\ ( S " { x } ) e. dom vol ) -> ( ( vol ` ( S " { x } ) ) e. RR <-> ( S " { x } ) e. ( `' vol " RR ) ) ) | 
						
							| 210 | 199 208 209 | sylancr |  |-  ( x e. RR -> ( ( vol ` ( S " { x } ) ) e. RR <-> ( S " { x } ) e. ( `' vol " RR ) ) ) | 
						
							| 211 | 196 210 | mpbid |  |-  ( x e. RR -> ( S " { x } ) e. ( `' vol " RR ) ) | 
						
							| 212 | 211 | rgen |  |-  A. x e. RR ( S " { x } ) e. ( `' vol " RR ) | 
						
							| 213 | 14 | a1i |  |-  ( 0 e. RR -> ( A [,] B ) C_ RR ) | 
						
							| 214 |  | rembl |  |-  RR e. dom vol | 
						
							| 215 | 214 | a1i |  |-  ( 0 e. RR -> RR e. dom vol ) | 
						
							| 216 | 116 115 | resubcld |  |-  ( x e. ( A [,] B ) -> ( V - U ) e. RR ) | 
						
							| 217 | 172 216 | eqeltrd |  |-  ( x e. ( A [,] B ) -> ( vol ` ( S " { x } ) ) e. RR ) | 
						
							| 218 | 217 | adantl |  |-  ( ( 0 e. RR /\ x e. ( A [,] B ) ) -> ( vol ` ( S " { x } ) ) e. RR ) | 
						
							| 219 |  | eldifn |  |-  ( x e. ( RR \ ( A [,] B ) ) -> -. x e. ( A [,] B ) ) | 
						
							| 220 | 219 188 | syl |  |-  ( x e. ( RR \ ( A [,] B ) ) -> ( vol ` ( S " { x } ) ) = 0 ) | 
						
							| 221 | 220 | adantl |  |-  ( ( 0 e. RR /\ x e. ( RR \ ( A [,] B ) ) ) -> ( vol ` ( S " { x } ) ) = 0 ) | 
						
							| 222 | 172 | mpteq2ia |  |-  ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) = ( x e. ( A [,] B ) |-> ( V - U ) ) | 
						
							| 223 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 224 | 223 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 225 | 224 | a1i |  |-  ( T. -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 226 | 11 | mpteq2i |  |-  ( x e. ( A [,] B ) |-> V ) = ( x e. ( A [,] B ) |-> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) | 
						
							| 227 | 223 | addcn |  |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 228 | 227 | a1i |  |-  ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 229 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 230 | 14 229 | sstri |  |-  ( A [,] B ) C_ CC | 
						
							| 231 |  | ssid |  |-  CC C_ CC | 
						
							| 232 |  | cncfmptc |  |-  ( ( E e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 233 | 63 230 231 232 | mp3an |  |-  ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 234 | 233 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 235 | 230 | sseli |  |-  ( x e. ( A [,] B ) -> x e. CC ) | 
						
							| 236 | 141 | a1i |  |-  ( x e. ( A [,] B ) -> A e. CC ) | 
						
							| 237 | 149 | a1i |  |-  ( x e. ( A [,] B ) -> ( B - A ) e. CC ) | 
						
							| 238 | 29 | a1i |  |-  ( x e. ( A [,] B ) -> ( B - A ) =/= 0 ) | 
						
							| 239 | 235 236 237 238 | divsubdird |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) = ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) | 
						
							| 240 | 239 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( ( x - A ) / ( B - A ) ) = ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) | 
						
							| 241 | 240 | mpteq2dva |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) = ( x e. ( A [,] B ) |-> ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) ) | 
						
							| 242 |  | resmpt |  |-  ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) ) | 
						
							| 243 | 230 242 | ax-mp |  |-  ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) | 
						
							| 244 |  | eqid |  |-  ( x e. CC |-> ( x / ( B - A ) ) ) = ( x e. CC |-> ( x / ( B - A ) ) ) | 
						
							| 245 | 244 | divccncf |  |-  ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) ) | 
						
							| 246 | 149 29 245 | mp2an |  |-  ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) | 
						
							| 247 |  | rescncf |  |-  ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x / ( B - A ) ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) | 
						
							| 248 | 230 246 247 | mp2 |  |-  ( ( x e. CC |-> ( x / ( B - A ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 249 | 243 248 | eqeltrri |  |-  ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 250 | 249 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( x / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 251 | 141 149 29 | divcli |  |-  ( A / ( B - A ) ) e. CC | 
						
							| 252 |  | cncfmptc |  |-  ( ( ( A / ( B - A ) ) e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 253 | 251 230 231 252 | mp3an |  |-  ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 254 | 253 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( A / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 255 | 223 225 250 254 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( x / ( B - A ) ) - ( A / ( B - A ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 256 | 241 255 | eqeltrd |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 257 |  | cncfmptc |  |-  ( ( F e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 258 | 65 230 231 257 | mp3an |  |-  ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 259 | 258 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> F ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 260 | 223 225 259 234 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( F - E ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 261 | 256 260 | mulcncf |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 262 | 223 228 234 261 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 263 | 226 262 | eqeltrid |  |-  ( T. -> ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 264 | 10 | mpteq2i |  |-  ( x e. ( A [,] B ) |-> U ) = ( x e. ( A [,] B ) |-> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) | 
						
							| 265 |  | cncfmptc |  |-  ( ( C e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 266 | 17 230 231 265 | mp3an |  |-  ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 267 | 266 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 268 |  | cncfmptc |  |-  ( ( D e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 269 | 33 230 231 268 | mp3an |  |-  ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 270 | 269 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> D ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 271 | 223 225 270 267 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( D - C ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 272 | 256 271 | mulcncf |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 273 | 223 228 267 272 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 274 | 264 273 | eqeltrid |  |-  ( T. -> ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 275 | 223 225 263 274 | cncfmpt2f |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 276 | 275 | mptru |  |-  ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 277 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( V - U ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( V - U ) ) e. L^1 ) | 
						
							| 278 | 1 2 276 277 | mp3an |  |-  ( x e. ( A [,] B ) |-> ( V - U ) ) e. L^1 | 
						
							| 279 | 222 278 | eqeltri |  |-  ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) e. L^1 | 
						
							| 280 | 279 | a1i |  |-  ( 0 e. RR -> ( x e. ( A [,] B ) |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) | 
						
							| 281 | 213 215 218 221 280 | iblss2 |  |-  ( 0 e. RR -> ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) | 
						
							| 282 | 193 281 | ax-mp |  |-  ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 | 
						
							| 283 |  | dmarea |  |-  ( S e. dom area <-> ( S C_ ( RR X. RR ) /\ A. x e. RR ( S " { x } ) e. ( `' vol " RR ) /\ ( x e. RR |-> ( vol ` ( S " { x } ) ) ) e. L^1 ) ) | 
						
							| 284 | 98 212 282 283 | mpbir3an |  |-  S e. dom area | 
						
							| 285 |  | areaval |  |-  ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x ) | 
						
							| 286 | 284 285 | ax-mp |  |-  ( area ` S ) = S. RR ( vol ` ( S " { x } ) ) _d x | 
						
							| 287 |  | itgeq2 |  |-  ( A. x e. RR ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) -> S. RR ( vol ` ( S " { x } ) ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x ) | 
						
							| 288 | 191 | a1i |  |-  ( x e. RR -> ( vol ` ( S " { x } ) ) = if ( x e. ( A [,] B ) , ( V - U ) , 0 ) ) | 
						
							| 289 | 287 288 | mprg |  |-  S. RR ( vol ` ( S " { x } ) ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x | 
						
							| 290 |  | itgss2 |  |-  ( ( A [,] B ) C_ RR -> S. ( A [,] B ) ( V - U ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x ) | 
						
							| 291 | 14 290 | ax-mp |  |-  S. ( A [,] B ) ( V - U ) _d x = S. RR if ( x e. ( A [,] B ) , ( V - U ) , 0 ) _d x | 
						
							| 292 | 65 63 | addcli |  |-  ( F + E ) e. CC | 
						
							| 293 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 294 |  | div32 |  |-  ( ( ( F + E ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( F + E ) / 2 ) x. ( B - A ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 295 | 292 293 149 294 | mp3an |  |-  ( ( ( F + E ) / 2 ) x. ( B - A ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) | 
						
							| 296 | 33 17 | addcli |  |-  ( D + C ) e. CC | 
						
							| 297 |  | div32 |  |-  ( ( ( D + C ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( D + C ) / 2 ) x. ( B - A ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 298 | 296 293 149 297 | mp3an |  |-  ( ( ( D + C ) / 2 ) x. ( B - A ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) | 
						
							| 299 | 295 298 | oveq12i |  |-  ( ( ( ( F + E ) / 2 ) x. ( B - A ) ) - ( ( ( D + C ) / 2 ) x. ( B - A ) ) ) = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 300 |  | 2cn |  |-  2 e. CC | 
						
							| 301 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 302 | 292 300 301 | divcli |  |-  ( ( F + E ) / 2 ) e. CC | 
						
							| 303 | 296 300 301 | divcli |  |-  ( ( D + C ) / 2 ) e. CC | 
						
							| 304 | 302 303 149 | subdiri |  |-  ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) = ( ( ( ( F + E ) / 2 ) x. ( B - A ) ) - ( ( ( D + C ) / 2 ) x. ( B - A ) ) ) | 
						
							| 305 | 116 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> V e. RR ) | 
						
							| 306 | 263 | mptru |  |-  ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 307 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> V ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> V ) e. L^1 ) | 
						
							| 308 | 1 2 306 307 | mp3an |  |-  ( x e. ( A [,] B ) |-> V ) e. L^1 | 
						
							| 309 | 308 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> V ) e. L^1 ) | 
						
							| 310 | 115 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> U e. RR ) | 
						
							| 311 | 274 | mptru |  |-  ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 312 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> U ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> U ) e. L^1 ) | 
						
							| 313 | 1 2 311 312 | mp3an |  |-  ( x e. ( A [,] B ) |-> U ) e. L^1 | 
						
							| 314 | 313 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> U ) e. L^1 ) | 
						
							| 315 | 305 309 310 314 | itgsub |  |-  ( T. -> S. ( A [,] B ) ( V - U ) _d x = ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) ) | 
						
							| 316 | 315 | mptru |  |-  S. ( A [,] B ) ( V - U ) _d x = ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) | 
						
							| 317 | 63 300 301 | divcan4i |  |-  ( ( E x. 2 ) / 2 ) = E | 
						
							| 318 | 317 | oveq1i |  |-  ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( E x. ( B - A ) ) | 
						
							| 319 | 63 300 | mulcli |  |-  ( E x. 2 ) e. CC | 
						
							| 320 |  | div32 |  |-  ( ( ( E x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 321 | 319 293 149 320 | mp3an |  |-  ( ( ( E x. 2 ) / 2 ) x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) | 
						
							| 322 | 318 321 | eqtr3i |  |-  ( E x. ( B - A ) ) = ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) | 
						
							| 323 | 322 | oveq1i |  |-  ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) = ( ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 324 |  | itgeq2 |  |-  ( A. x e. ( A [,] B ) V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) -> S. ( A [,] B ) V _d x = S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x ) | 
						
							| 325 | 11 | a1i |  |-  ( x e. ( A [,] B ) -> V = ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) ) | 
						
							| 326 | 324 325 | mprg |  |-  S. ( A [,] B ) V _d x = S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x | 
						
							| 327 | 5 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> E e. RR ) | 
						
							| 328 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> E ) e. L^1 ) | 
						
							| 329 | 1 2 233 328 | mp3an |  |-  ( x e. ( A [,] B ) |-> E ) e. L^1 | 
						
							| 330 | 329 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> E ) e. L^1 ) | 
						
							| 331 | 128 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( ( x - A ) / ( B - A ) ) e. RR ) | 
						
							| 332 | 6 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> F e. RR ) | 
						
							| 333 | 332 327 | resubcld |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( F - E ) e. RR ) | 
						
							| 334 | 331 333 | remulcld |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) e. RR ) | 
						
							| 335 | 261 | mptru |  |-  ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 336 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 ) | 
						
							| 337 | 1 2 335 336 | mp3an |  |-  ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 | 
						
							| 338 | 337 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) e. L^1 ) | 
						
							| 339 | 327 330 334 338 | itgadd |  |-  ( T. -> S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x = ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) ) | 
						
							| 340 | 339 | mptru |  |-  S. ( A [,] B ) ( E + ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) _d x = ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) | 
						
							| 341 |  | iccmbl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) | 
						
							| 342 | 1 2 341 | mp2an |  |-  ( A [,] B ) e. dom vol | 
						
							| 343 |  | mblvol |  |-  ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) | 
						
							| 344 | 342 343 | ax-mp |  |-  ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) | 
						
							| 345 | 1 2 7 | ltleii |  |-  A <_ B | 
						
							| 346 |  | ovolicc |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) | 
						
							| 347 | 1 2 345 346 | mp3an |  |-  ( vol* ` ( A [,] B ) ) = ( B - A ) | 
						
							| 348 | 344 347 | eqtri |  |-  ( vol ` ( A [,] B ) ) = ( B - A ) | 
						
							| 349 | 348 21 | eqeltri |  |-  ( vol ` ( A [,] B ) ) e. RR | 
						
							| 350 |  | itgconst |  |-  ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ E e. CC ) -> S. ( A [,] B ) E _d x = ( E x. ( vol ` ( A [,] B ) ) ) ) | 
						
							| 351 | 342 349 63 350 | mp3an |  |-  S. ( A [,] B ) E _d x = ( E x. ( vol ` ( A [,] B ) ) ) | 
						
							| 352 | 348 | oveq2i |  |-  ( E x. ( vol ` ( A [,] B ) ) ) = ( E x. ( B - A ) ) | 
						
							| 353 | 351 352 | eqtri |  |-  S. ( A [,] B ) E _d x = ( E x. ( B - A ) ) | 
						
							| 354 | 65 | a1i |  |-  ( T. -> F e. CC ) | 
						
							| 355 | 63 | a1i |  |-  ( T. -> E e. CC ) | 
						
							| 356 | 354 355 | subcld |  |-  ( T. -> ( F - E ) e. CC ) | 
						
							| 357 | 256 | mptru |  |-  ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 358 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 ) | 
						
							| 359 | 1 2 357 358 | mp3an |  |-  ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 | 
						
							| 360 | 359 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( x - A ) / ( B - A ) ) ) e. L^1 ) | 
						
							| 361 | 356 331 360 | itgmulc2 |  |-  ( T. -> ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x ) | 
						
							| 362 | 361 | mptru |  |-  ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x | 
						
							| 363 |  | itgeq2 |  |-  ( A. x e. ( A [,] B ) ( ( x - A ) / ( B - A ) ) = ( ( 1 / ( B - A ) ) x. ( x - A ) ) -> S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x ) | 
						
							| 364 | 139 | recnd |  |-  ( x e. ( A [,] B ) -> ( x - A ) e. CC ) | 
						
							| 365 | 364 237 238 | divrec2d |  |-  ( x e. ( A [,] B ) -> ( ( x - A ) / ( B - A ) ) = ( ( 1 / ( B - A ) ) x. ( x - A ) ) ) | 
						
							| 366 | 363 365 | mprg |  |-  S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x | 
						
							| 367 | 15 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> x e. RR ) | 
						
							| 368 |  | cncfmptid |  |-  ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 369 | 230 231 368 | mp2an |  |-  ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 370 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> x ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) | 
						
							| 371 | 1 2 369 370 | mp3an |  |-  ( x e. ( A [,] B ) |-> x ) e. L^1 | 
						
							| 372 | 371 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> x ) e. L^1 ) | 
						
							| 373 | 1 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> A e. RR ) | 
						
							| 374 |  | cncfmptc |  |-  ( ( A e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 375 | 141 230 231 374 | mp3an |  |-  ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 376 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> A ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> A ) e. L^1 ) | 
						
							| 377 | 1 2 375 376 | mp3an |  |-  ( x e. ( A [,] B ) |-> A ) e. L^1 | 
						
							| 378 | 377 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> A ) e. L^1 ) | 
						
							| 379 | 367 372 373 378 | itgsub |  |-  ( T. -> S. ( A [,] B ) ( x - A ) _d x = ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) ) | 
						
							| 380 | 379 | mptru |  |-  S. ( A [,] B ) ( x - A ) _d x = ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) | 
						
							| 381 | 1 | a1i |  |-  ( T. -> A e. RR ) | 
						
							| 382 | 2 | a1i |  |-  ( T. -> B e. RR ) | 
						
							| 383 | 345 | a1i |  |-  ( T. -> A <_ B ) | 
						
							| 384 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 385 | 384 | a1i |  |-  ( T. -> 1 e. NN0 ) | 
						
							| 386 | 381 382 383 385 | itgpowd |  |-  ( T. -> S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) ) | 
						
							| 387 | 386 | mptru |  |-  S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) | 
						
							| 388 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 389 | 388 | oveq2i |  |-  ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / ( 1 + 1 ) ) = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) | 
						
							| 390 | 387 389 | eqtri |  |-  S. ( A [,] B ) ( x ^ 1 ) _d x = ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) | 
						
							| 391 |  | itgeq2 |  |-  ( A. x e. ( A [,] B ) ( x ^ 1 ) = x -> S. ( A [,] B ) ( x ^ 1 ) _d x = S. ( A [,] B ) x _d x ) | 
						
							| 392 | 235 | exp1d |  |-  ( x e. ( A [,] B ) -> ( x ^ 1 ) = x ) | 
						
							| 393 | 391 392 | mprg |  |-  S. ( A [,] B ) ( x ^ 1 ) _d x = S. ( A [,] B ) x _d x | 
						
							| 394 | 388 | oveq2i |  |-  ( B ^ ( 1 + 1 ) ) = ( B ^ 2 ) | 
						
							| 395 | 388 | oveq2i |  |-  ( A ^ ( 1 + 1 ) ) = ( A ^ 2 ) | 
						
							| 396 | 394 395 | oveq12i |  |-  ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) = ( ( B ^ 2 ) - ( A ^ 2 ) ) | 
						
							| 397 | 396 | oveq1i |  |-  ( ( ( B ^ ( 1 + 1 ) ) - ( A ^ ( 1 + 1 ) ) ) / 2 ) = ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) | 
						
							| 398 | 390 393 397 | 3eqtr3i |  |-  S. ( A [,] B ) x _d x = ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) | 
						
							| 399 |  | itgconst |  |-  ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ A e. CC ) -> S. ( A [,] B ) A _d x = ( A x. ( vol ` ( A [,] B ) ) ) ) | 
						
							| 400 | 342 349 141 399 | mp3an |  |-  S. ( A [,] B ) A _d x = ( A x. ( vol ` ( A [,] B ) ) ) | 
						
							| 401 | 348 | oveq2i |  |-  ( A x. ( vol ` ( A [,] B ) ) ) = ( A x. ( B - A ) ) | 
						
							| 402 | 400 401 | eqtri |  |-  S. ( A [,] B ) A _d x = ( A x. ( B - A ) ) | 
						
							| 403 | 398 402 | oveq12i |  |-  ( S. ( A [,] B ) x _d x - S. ( A [,] B ) A _d x ) = ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) | 
						
							| 404 | 380 403 | eqtri |  |-  S. ( A [,] B ) ( x - A ) _d x = ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) | 
						
							| 405 | 404 | oveq2i |  |-  ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = ( ( 1 / ( B - A ) ) x. ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) ) | 
						
							| 406 | 23 | a1i |  |-  ( T. -> B e. CC ) | 
						
							| 407 | 141 | a1i |  |-  ( T. -> A e. CC ) | 
						
							| 408 | 406 407 | subcld |  |-  ( T. -> ( B - A ) e. CC ) | 
						
							| 409 | 26 | a1i |  |-  ( T. -> B =/= A ) | 
						
							| 410 | 406 407 409 | subne0d |  |-  ( T. -> ( B - A ) =/= 0 ) | 
						
							| 411 | 408 410 | reccld |  |-  ( T. -> ( 1 / ( B - A ) ) e. CC ) | 
						
							| 412 | 411 | mptru |  |-  ( 1 / ( B - A ) ) e. CC | 
						
							| 413 | 23 | sqcli |  |-  ( B ^ 2 ) e. CC | 
						
							| 414 | 141 | sqcli |  |-  ( A ^ 2 ) e. CC | 
						
							| 415 | 413 414 | subcli |  |-  ( ( B ^ 2 ) - ( A ^ 2 ) ) e. CC | 
						
							| 416 | 415 300 301 | divcli |  |-  ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) e. CC | 
						
							| 417 | 141 149 | mulcli |  |-  ( A x. ( B - A ) ) e. CC | 
						
							| 418 | 412 416 417 | subdii |  |-  ( ( 1 / ( B - A ) ) x. ( ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) - ( A x. ( B - A ) ) ) ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) | 
						
							| 419 | 405 418 | eqtri |  |-  ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) | 
						
							| 420 | 139 | adantl |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( x - A ) e. RR ) | 
						
							| 421 | 367 372 373 378 | iblsub |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( x - A ) ) e. L^1 ) | 
						
							| 422 | 411 420 421 | itgmulc2 |  |-  ( T. -> ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x ) | 
						
							| 423 | 422 | mptru |  |-  ( ( 1 / ( B - A ) ) x. S. ( A [,] B ) ( x - A ) _d x ) = S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x | 
						
							| 424 | 412 417 | mulcomi |  |-  ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) = ( ( A x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) | 
						
							| 425 | 417 149 29 | divreci |  |-  ( ( A x. ( B - A ) ) / ( B - A ) ) = ( ( A x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) | 
						
							| 426 | 141 149 29 | divcan4i |  |-  ( ( A x. ( B - A ) ) / ( B - A ) ) = A | 
						
							| 427 | 424 425 426 | 3eqtr2i |  |-  ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) = A | 
						
							| 428 | 427 | oveq2i |  |-  ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - ( ( 1 / ( B - A ) ) x. ( A x. ( B - A ) ) ) ) = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) | 
						
							| 429 | 419 423 428 | 3eqtr3i |  |-  S. ( A [,] B ) ( ( 1 / ( B - A ) ) x. ( x - A ) ) _d x = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) | 
						
							| 430 | 366 429 | eqtri |  |-  S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) | 
						
							| 431 | 23 141 | subsqi |  |-  ( ( B ^ 2 ) - ( A ^ 2 ) ) = ( ( B + A ) x. ( B - A ) ) | 
						
							| 432 | 431 | oveq1i |  |-  ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) = ( ( ( B + A ) x. ( B - A ) ) / 2 ) | 
						
							| 433 | 432 | oveq2i |  |-  ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) = ( ( 1 / ( B - A ) ) x. ( ( ( B + A ) x. ( B - A ) ) / 2 ) ) | 
						
							| 434 | 431 415 | eqeltrri |  |-  ( ( B + A ) x. ( B - A ) ) e. CC | 
						
							| 435 | 412 434 300 301 | divassi |  |-  ( ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) / 2 ) = ( ( 1 / ( B - A ) ) x. ( ( ( B + A ) x. ( B - A ) ) / 2 ) ) | 
						
							| 436 | 412 434 | mulcomi |  |-  ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) = ( ( ( B + A ) x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) | 
						
							| 437 | 434 149 29 | divreci |  |-  ( ( ( B + A ) x. ( B - A ) ) / ( B - A ) ) = ( ( ( B + A ) x. ( B - A ) ) x. ( 1 / ( B - A ) ) ) | 
						
							| 438 | 23 141 | addcli |  |-  ( B + A ) e. CC | 
						
							| 439 | 438 149 29 | divcan4i |  |-  ( ( ( B + A ) x. ( B - A ) ) / ( B - A ) ) = ( B + A ) | 
						
							| 440 | 436 437 439 | 3eqtr2i |  |-  ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) = ( B + A ) | 
						
							| 441 | 440 | oveq1i |  |-  ( ( ( 1 / ( B - A ) ) x. ( ( B + A ) x. ( B - A ) ) ) / 2 ) = ( ( B + A ) / 2 ) | 
						
							| 442 | 433 435 441 | 3eqtr2i |  |-  ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) = ( ( B + A ) / 2 ) | 
						
							| 443 | 442 | oveq1i |  |-  ( ( ( 1 / ( B - A ) ) x. ( ( ( B ^ 2 ) - ( A ^ 2 ) ) / 2 ) ) - A ) = ( ( ( B + A ) / 2 ) - A ) | 
						
							| 444 | 141 300 | mulcli |  |-  ( A x. 2 ) e. CC | 
						
							| 445 |  | divsubdir |  |-  ( ( ( B + A ) e. CC /\ ( A x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) ) | 
						
							| 446 | 438 444 293 445 | mp3an |  |-  ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) | 
						
							| 447 | 23 141 444 | addsubassi |  |-  ( ( B + A ) - ( A x. 2 ) ) = ( B + ( A - ( A x. 2 ) ) ) | 
						
							| 448 |  | subsub2 |  |-  ( ( B e. CC /\ ( A x. 2 ) e. CC /\ A e. CC ) -> ( B - ( ( A x. 2 ) - A ) ) = ( B + ( A - ( A x. 2 ) ) ) ) | 
						
							| 449 | 23 444 141 448 | mp3an |  |-  ( B - ( ( A x. 2 ) - A ) ) = ( B + ( A - ( A x. 2 ) ) ) | 
						
							| 450 | 141 | times2i |  |-  ( A x. 2 ) = ( A + A ) | 
						
							| 451 | 450 | oveq1i |  |-  ( ( A x. 2 ) - A ) = ( ( A + A ) - A ) | 
						
							| 452 | 141 141 | pncan3oi |  |-  ( ( A + A ) - A ) = A | 
						
							| 453 | 451 452 | eqtri |  |-  ( ( A x. 2 ) - A ) = A | 
						
							| 454 | 453 | oveq2i |  |-  ( B - ( ( A x. 2 ) - A ) ) = ( B - A ) | 
						
							| 455 | 447 449 454 | 3eqtr2i |  |-  ( ( B + A ) - ( A x. 2 ) ) = ( B - A ) | 
						
							| 456 | 455 | oveq1i |  |-  ( ( ( B + A ) - ( A x. 2 ) ) / 2 ) = ( ( B - A ) / 2 ) | 
						
							| 457 | 141 300 301 | divcan4i |  |-  ( ( A x. 2 ) / 2 ) = A | 
						
							| 458 | 457 | oveq2i |  |-  ( ( ( B + A ) / 2 ) - ( ( A x. 2 ) / 2 ) ) = ( ( ( B + A ) / 2 ) - A ) | 
						
							| 459 | 446 456 458 | 3eqtr3ri |  |-  ( ( ( B + A ) / 2 ) - A ) = ( ( B - A ) / 2 ) | 
						
							| 460 | 430 443 459 | 3eqtri |  |-  S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x = ( ( B - A ) / 2 ) | 
						
							| 461 | 460 | oveq2i |  |-  ( ( F - E ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = ( ( F - E ) x. ( ( B - A ) / 2 ) ) | 
						
							| 462 |  | itgeq2 |  |-  ( A. x e. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) -> S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) | 
						
							| 463 | 65 63 | subcli |  |-  ( F - E ) e. CC | 
						
							| 464 | 463 | a1i |  |-  ( x e. ( A [,] B ) -> ( F - E ) e. CC ) | 
						
							| 465 | 464 129 | mulcomd |  |-  ( x e. ( A [,] B ) -> ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) ) | 
						
							| 466 | 462 465 | mprg |  |-  S. ( A [,] B ) ( ( F - E ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x | 
						
							| 467 | 362 461 466 | 3eqtr3ri |  |-  S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x = ( ( F - E ) x. ( ( B - A ) / 2 ) ) | 
						
							| 468 | 353 467 | oveq12i |  |-  ( S. ( A [,] B ) E _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( F - E ) ) _d x ) = ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 469 | 326 340 468 | 3eqtri |  |-  S. ( A [,] B ) V _d x = ( ( E x. ( B - A ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 470 | 149 300 301 | divcli |  |-  ( ( B - A ) / 2 ) e. CC | 
						
							| 471 | 319 463 470 | adddiri |  |-  ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) = ( ( ( E x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( F - E ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 472 | 323 469 471 | 3eqtr4i |  |-  S. ( A [,] B ) V _d x = ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) | 
						
							| 473 |  | addsub12 |  |-  ( ( F e. CC /\ ( E x. 2 ) e. CC /\ E e. CC ) -> ( F + ( ( E x. 2 ) - E ) ) = ( ( E x. 2 ) + ( F - E ) ) ) | 
						
							| 474 | 65 319 63 473 | mp3an |  |-  ( F + ( ( E x. 2 ) - E ) ) = ( ( E x. 2 ) + ( F - E ) ) | 
						
							| 475 | 63 | times2i |  |-  ( E x. 2 ) = ( E + E ) | 
						
							| 476 | 475 | oveq1i |  |-  ( ( E x. 2 ) - E ) = ( ( E + E ) - E ) | 
						
							| 477 | 63 63 | pncan3oi |  |-  ( ( E + E ) - E ) = E | 
						
							| 478 | 476 477 | eqtri |  |-  ( ( E x. 2 ) - E ) = E | 
						
							| 479 | 478 | oveq2i |  |-  ( F + ( ( E x. 2 ) - E ) ) = ( F + E ) | 
						
							| 480 | 474 479 | eqtr3i |  |-  ( ( E x. 2 ) + ( F - E ) ) = ( F + E ) | 
						
							| 481 | 480 | oveq1i |  |-  ( ( ( E x. 2 ) + ( F - E ) ) x. ( ( B - A ) / 2 ) ) = ( ( F + E ) x. ( ( B - A ) / 2 ) ) | 
						
							| 482 | 472 481 | eqtri |  |-  S. ( A [,] B ) V _d x = ( ( F + E ) x. ( ( B - A ) / 2 ) ) | 
						
							| 483 | 17 300 301 | divcan4i |  |-  ( ( C x. 2 ) / 2 ) = C | 
						
							| 484 | 483 | oveq1i |  |-  ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( C x. ( B - A ) ) | 
						
							| 485 | 17 300 | mulcli |  |-  ( C x. 2 ) e. CC | 
						
							| 486 |  | div32 |  |-  ( ( ( C x. 2 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( B - A ) e. CC ) -> ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 487 | 485 293 149 486 | mp3an |  |-  ( ( ( C x. 2 ) / 2 ) x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) | 
						
							| 488 | 484 487 | eqtr3i |  |-  ( C x. ( B - A ) ) = ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) | 
						
							| 489 | 488 | oveq1i |  |-  ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) = ( ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 490 | 10 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> U = ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) ) | 
						
							| 491 | 490 | itgeq2dv |  |-  ( T. -> S. ( A [,] B ) U _d x = S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x ) | 
						
							| 492 | 491 | mptru |  |-  S. ( A [,] B ) U _d x = S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x | 
						
							| 493 | 3 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> C e. RR ) | 
						
							| 494 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> C ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> C ) e. L^1 ) | 
						
							| 495 | 1 2 266 494 | mp3an |  |-  ( x e. ( A [,] B ) |-> C ) e. L^1 | 
						
							| 496 | 495 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> C ) e. L^1 ) | 
						
							| 497 | 4 | a1i |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> D e. RR ) | 
						
							| 498 | 497 493 | resubcld |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( D - C ) e. RR ) | 
						
							| 499 | 331 498 | remulcld |  |-  ( ( T. /\ x e. ( A [,] B ) ) -> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) e. RR ) | 
						
							| 500 | 272 | mptru |  |-  ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) | 
						
							| 501 |  | cniccibl |  |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 ) | 
						
							| 502 | 1 2 500 501 | mp3an |  |-  ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 | 
						
							| 503 | 502 | a1i |  |-  ( T. -> ( x e. ( A [,] B ) |-> ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) e. L^1 ) | 
						
							| 504 | 493 496 499 503 | itgadd |  |-  ( T. -> S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x = ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) ) | 
						
							| 505 | 504 | mptru |  |-  S. ( A [,] B ) ( C + ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) _d x = ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) | 
						
							| 506 |  | itgconst |  |-  ( ( ( A [,] B ) e. dom vol /\ ( vol ` ( A [,] B ) ) e. RR /\ C e. CC ) -> S. ( A [,] B ) C _d x = ( C x. ( vol ` ( A [,] B ) ) ) ) | 
						
							| 507 | 342 349 17 506 | mp3an |  |-  S. ( A [,] B ) C _d x = ( C x. ( vol ` ( A [,] B ) ) ) | 
						
							| 508 | 348 | oveq2i |  |-  ( C x. ( vol ` ( A [,] B ) ) ) = ( C x. ( B - A ) ) | 
						
							| 509 | 507 508 | eqtri |  |-  S. ( A [,] B ) C _d x = ( C x. ( B - A ) ) | 
						
							| 510 | 33 | a1i |  |-  ( T. -> D e. CC ) | 
						
							| 511 | 17 | a1i |  |-  ( T. -> C e. CC ) | 
						
							| 512 | 510 511 | subcld |  |-  ( T. -> ( D - C ) e. CC ) | 
						
							| 513 | 512 331 360 | itgmulc2 |  |-  ( T. -> ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x ) | 
						
							| 514 | 513 | mptru |  |-  ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x | 
						
							| 515 | 460 | oveq2i |  |-  ( ( D - C ) x. S. ( A [,] B ) ( ( x - A ) / ( B - A ) ) _d x ) = ( ( D - C ) x. ( ( B - A ) / 2 ) ) | 
						
							| 516 |  | itgeq2 |  |-  ( A. x e. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) -> S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) | 
						
							| 517 | 33 17 | subcli |  |-  ( D - C ) e. CC | 
						
							| 518 | 517 | a1i |  |-  ( x e. ( A [,] B ) -> ( D - C ) e. CC ) | 
						
							| 519 | 518 129 | mulcomd |  |-  ( x e. ( A [,] B ) -> ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) = ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) ) | 
						
							| 520 | 516 519 | mprg |  |-  S. ( A [,] B ) ( ( D - C ) x. ( ( x - A ) / ( B - A ) ) ) _d x = S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x | 
						
							| 521 | 514 515 520 | 3eqtr3ri |  |-  S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x = ( ( D - C ) x. ( ( B - A ) / 2 ) ) | 
						
							| 522 | 509 521 | oveq12i |  |-  ( S. ( A [,] B ) C _d x + S. ( A [,] B ) ( ( ( x - A ) / ( B - A ) ) x. ( D - C ) ) _d x ) = ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 523 | 492 505 522 | 3eqtri |  |-  S. ( A [,] B ) U _d x = ( ( C x. ( B - A ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 524 | 485 517 470 | adddiri |  |-  ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) = ( ( ( C x. 2 ) x. ( ( B - A ) / 2 ) ) + ( ( D - C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 525 | 489 523 524 | 3eqtr4i |  |-  S. ( A [,] B ) U _d x = ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) | 
						
							| 526 |  | addsub12 |  |-  ( ( D e. CC /\ ( C x. 2 ) e. CC /\ C e. CC ) -> ( D + ( ( C x. 2 ) - C ) ) = ( ( C x. 2 ) + ( D - C ) ) ) | 
						
							| 527 | 33 485 17 526 | mp3an |  |-  ( D + ( ( C x. 2 ) - C ) ) = ( ( C x. 2 ) + ( D - C ) ) | 
						
							| 528 | 17 | times2i |  |-  ( C x. 2 ) = ( C + C ) | 
						
							| 529 | 528 | oveq1i |  |-  ( ( C x. 2 ) - C ) = ( ( C + C ) - C ) | 
						
							| 530 | 17 17 | pncan3oi |  |-  ( ( C + C ) - C ) = C | 
						
							| 531 | 529 530 | eqtri |  |-  ( ( C x. 2 ) - C ) = C | 
						
							| 532 | 531 | oveq2i |  |-  ( D + ( ( C x. 2 ) - C ) ) = ( D + C ) | 
						
							| 533 | 527 532 | eqtr3i |  |-  ( ( C x. 2 ) + ( D - C ) ) = ( D + C ) | 
						
							| 534 | 533 | oveq1i |  |-  ( ( ( C x. 2 ) + ( D - C ) ) x. ( ( B - A ) / 2 ) ) = ( ( D + C ) x. ( ( B - A ) / 2 ) ) | 
						
							| 535 | 525 534 | eqtri |  |-  S. ( A [,] B ) U _d x = ( ( D + C ) x. ( ( B - A ) / 2 ) ) | 
						
							| 536 | 482 535 | oveq12i |  |-  ( S. ( A [,] B ) V _d x - S. ( A [,] B ) U _d x ) = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 537 | 316 536 | eqtri |  |-  S. ( A [,] B ) ( V - U ) _d x = ( ( ( F + E ) x. ( ( B - A ) / 2 ) ) - ( ( D + C ) x. ( ( B - A ) / 2 ) ) ) | 
						
							| 538 | 299 304 537 | 3eqtr4ri |  |-  S. ( A [,] B ) ( V - U ) _d x = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) | 
						
							| 539 | 289 291 538 | 3eqtr2i |  |-  S. RR ( vol ` ( S " { x } ) ) _d x = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) | 
						
							| 540 | 286 539 | eqtri |  |-  ( area ` S ) = ( ( ( ( F + E ) / 2 ) - ( ( D + C ) / 2 ) ) x. ( B - A ) ) |