Metamath Proof Explorer


Theorem subsub2

Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subsub2 A B C A B C = A + C - B

Proof

Step Hyp Ref Expression
1 subcl B C B C
2 1 3adant1 A B C B C
3 simp1 A B C A
4 simp3 A B C C
5 simp2 A B C B
6 subcl C B C B
7 4 5 6 syl2anc A B C C B
8 2 3 7 add12d A B C B C + A + C B = A + B C + C B
9 npncan2 B C B C + C - B = 0
10 9 3adant1 A B C B C + C - B = 0
11 10 oveq2d A B C A + B C + C B = A + 0
12 3 addid1d A B C A + 0 = A
13 8 11 12 3eqtrd A B C B C + A + C B = A
14 3 7 addcld A B C A + C - B
15 subadd A B C A + C - B A B C = A + C - B B C + A + C B = A
16 3 2 14 15 syl3anc A B C A B C = A + C - B B C + A + C B = A
17 13 16 mpbird A B C A B C = A + C - B