Metamath Proof Explorer


Theorem cnioobibld

Description: A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider F = ( x e. ( 0 (,) 1 ) |-> ( 1 / x ) ) . See cniccibl for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019)

Ref Expression
Hypotheses cnioobibld.1
|- ( ph -> A e. RR )
cnioobibld.2
|- ( ph -> B e. RR )
cnioobibld.3
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
cnioobibld.4
|- ( ph -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x )
Assertion cnioobibld
|- ( ph -> F e. L^1 )

Proof

Step Hyp Ref Expression
1 cnioobibld.1
 |-  ( ph -> A e. RR )
2 cnioobibld.2
 |-  ( ph -> B e. RR )
3 cnioobibld.3
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
4 cnioobibld.4
 |-  ( ph -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x )
5 ioombl
 |-  ( A (,) B ) e. dom vol
6 cnmbf
 |-  ( ( ( A (,) B ) e. dom vol /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> F e. MblFn )
7 5 3 6 sylancr
 |-  ( ph -> F e. MblFn )
8 cncff
 |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC )
9 fdm
 |-  ( F : ( A (,) B ) --> CC -> dom F = ( A (,) B ) )
10 3 8 9 3syl
 |-  ( ph -> dom F = ( A (,) B ) )
11 10 fveq2d
 |-  ( ph -> ( vol ` dom F ) = ( vol ` ( A (,) B ) ) )
12 ioovolcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR )
13 1 2 12 syl2anc
 |-  ( ph -> ( vol ` ( A (,) B ) ) e. RR )
14 11 13 eqeltrd
 |-  ( ph -> ( vol ` dom F ) e. RR )
15 bddibl
 |-  ( ( F e. MblFn /\ ( vol ` dom F ) e. RR /\ E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) -> F e. L^1 )
16 7 14 4 15 syl3anc
 |-  ( ph -> F e. L^1 )