Metamath Proof Explorer


Theorem unmbl

Description: A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion unmbl AdomvolBdomvolABdomvol

Proof

Step Hyp Ref Expression
1 mblss AdomvolA
2 mblss BdomvolB
3 1 2 anim12i AdomvolBdomvolAB
4 unss ABAB
5 3 4 sylib AdomvolBdomvolAB
6 elpwi x𝒫x
7 inss1 xABx
8 ovolsscl xABxxvol*xvol*xAB
9 7 8 mp3an1 xvol*xvol*xAB
10 9 adantl AdomvolBdomvolxvol*xvol*xAB
11 inss1 xAx
12 ovolsscl xAxxvol*xvol*xA
13 11 12 mp3an1 xvol*xvol*xA
14 13 adantl AdomvolBdomvolxvol*xvol*xA
15 inss1 xABxA
16 difss xAx
17 simprl AdomvolBdomvolxvol*xx
18 16 17 sstrid AdomvolBdomvolxvol*xxA
19 ovolsscl xAxxvol*xvol*xA
20 16 19 mp3an1 xvol*xvol*xA
21 20 adantl AdomvolBdomvolxvol*xvol*xA
22 ovolsscl xABxAxAvol*xAvol*xAB
23 15 18 21 22 mp3an2i AdomvolBdomvolxvol*xvol*xAB
24 14 23 readdcld AdomvolBdomvolxvol*xvol*xA+vol*xAB
25 difss xABx
26 ovolsscl xABxxvol*xvol*xAB
27 25 26 mp3an1 xvol*xvol*xAB
28 27 adantl AdomvolBdomvolxvol*xvol*xAB
29 incom xAB=BxA
30 indifcom BxA=xBA
31 29 30 eqtri xAB=xBA
32 31 uneq2i xAxAB=xAxBA
33 indi xABA=xAxBA
34 undif2 ABA=AB
35 34 ineq2i xABA=xAB
36 32 33 35 3eqtr2ri xAB=xAxAB
37 36 fveq2i vol*xAB=vol*xAxAB
38 11 17 sstrid AdomvolBdomvolxvol*xxA
39 15 18 sstrid AdomvolBdomvolxvol*xxAB
40 ovolun xAvol*xAxABvol*xABvol*xAxABvol*xA+vol*xAB
41 38 14 39 23 40 syl22anc AdomvolBdomvolxvol*xvol*xAxABvol*xA+vol*xAB
42 37 41 eqbrtrid AdomvolBdomvolxvol*xvol*xABvol*xA+vol*xAB
43 10 24 28 42 leadd1dd AdomvolBdomvolxvol*xvol*xAB+vol*xABvol*xA+vol*xAB+vol*xAB
44 simplr AdomvolBdomvolxvol*xBdomvol
45 mblsplit BdomvolxAvol*xAvol*xA=vol*xAB+vol*xAB
46 44 18 21 45 syl3anc AdomvolBdomvolxvol*xvol*xA=vol*xAB+vol*xAB
47 difun1 xAB=xAB
48 47 fveq2i vol*xAB=vol*xAB
49 48 oveq2i vol*xAB+vol*xAB=vol*xAB+vol*xAB
50 46 49 eqtr4di AdomvolBdomvolxvol*xvol*xA=vol*xAB+vol*xAB
51 50 oveq2d AdomvolBdomvolxvol*xvol*xA+vol*xA=vol*xA+vol*xAB+vol*xAB
52 simpll AdomvolBdomvolxvol*xAdomvol
53 simprr AdomvolBdomvolxvol*xvol*x
54 mblsplit Adomvolxvol*xvol*x=vol*xA+vol*xA
55 52 17 53 54 syl3anc AdomvolBdomvolxvol*xvol*x=vol*xA+vol*xA
56 14 recnd AdomvolBdomvolxvol*xvol*xA
57 23 recnd AdomvolBdomvolxvol*xvol*xAB
58 28 recnd AdomvolBdomvolxvol*xvol*xAB
59 56 57 58 addassd AdomvolBdomvolxvol*xvol*xA+vol*xAB+vol*xAB=vol*xA+vol*xAB+vol*xAB
60 51 55 59 3eqtr4d AdomvolBdomvolxvol*xvol*x=vol*xA+vol*xAB+vol*xAB
61 43 60 breqtrrd AdomvolBdomvolxvol*xvol*xAB+vol*xABvol*x
62 61 expr AdomvolBdomvolxvol*xvol*xAB+vol*xABvol*x
63 6 62 sylan2 AdomvolBdomvolx𝒫vol*xvol*xAB+vol*xABvol*x
64 63 ralrimiva AdomvolBdomvolx𝒫vol*xvol*xAB+vol*xABvol*x
65 ismbl2 ABdomvolABx𝒫vol*xvol*xAB+vol*xABvol*x
66 5 64 65 sylanbrc AdomvolBdomvolABdomvol