Description: A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | unmbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mblss | |
|
2 | mblss | |
|
3 | 1 2 | anim12i | |
4 | unss | |
|
5 | 3 4 | sylib | |
6 | elpwi | |
|
7 | inss1 | |
|
8 | ovolsscl | |
|
9 | 7 8 | mp3an1 | |
10 | 9 | adantl | |
11 | inss1 | |
|
12 | ovolsscl | |
|
13 | 11 12 | mp3an1 | |
14 | 13 | adantl | |
15 | inss1 | |
|
16 | difss | |
|
17 | simprl | |
|
18 | 16 17 | sstrid | |
19 | ovolsscl | |
|
20 | 16 19 | mp3an1 | |
21 | 20 | adantl | |
22 | ovolsscl | |
|
23 | 15 18 21 22 | mp3an2i | |
24 | 14 23 | readdcld | |
25 | difss | |
|
26 | ovolsscl | |
|
27 | 25 26 | mp3an1 | |
28 | 27 | adantl | |
29 | incom | |
|
30 | indifcom | |
|
31 | 29 30 | eqtri | |
32 | 31 | uneq2i | |
33 | indi | |
|
34 | undif2 | |
|
35 | 34 | ineq2i | |
36 | 32 33 35 | 3eqtr2ri | |
37 | 36 | fveq2i | |
38 | 11 17 | sstrid | |
39 | 15 18 | sstrid | |
40 | ovolun | |
|
41 | 38 14 39 23 40 | syl22anc | |
42 | 37 41 | eqbrtrid | |
43 | 10 24 28 42 | leadd1dd | |
44 | simplr | |
|
45 | mblsplit | |
|
46 | 44 18 21 45 | syl3anc | |
47 | difun1 | |
|
48 | 47 | fveq2i | |
49 | 48 | oveq2i | |
50 | 46 49 | eqtr4di | |
51 | 50 | oveq2d | |
52 | simpll | |
|
53 | simprr | |
|
54 | mblsplit | |
|
55 | 52 17 53 54 | syl3anc | |
56 | 14 | recnd | |
57 | 23 | recnd | |
58 | 28 | recnd | |
59 | 56 57 58 | addassd | |
60 | 51 55 59 | 3eqtr4d | |
61 | 43 60 | breqtrrd | |
62 | 61 | expr | |
63 | 6 62 | sylan2 | |
64 | 63 | ralrimiva | |
65 | ismbl2 | |
|
66 | 5 64 65 | sylanbrc | |