Metamath Proof Explorer


Theorem shftmbl

Description: A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Assertion shftmbl AdomvolBx|xBAdomvol

Proof

Step Hyp Ref Expression
1 ssrab2 x|xBA
2 1 a1i AdomvolBx|xBA
3 elpwi y𝒫y
4 simpll AdomvolByvol*yAdomvol
5 ssrab2 z|zBy
6 5 a1i AdomvolByvol*yz|zBy
7 simprl AdomvolByvol*yy
8 simplr AdomvolByvol*yB
9 8 renegcld AdomvolByvol*yB
10 eqidd AdomvolByvol*yz|zBy=z|zBy
11 7 9 10 ovolshft AdomvolByvol*yvol*y=vol*z|zBy
12 simprr AdomvolByvol*yvol*y
13 11 12 eqeltrrd AdomvolByvol*yvol*z|zBy
14 mblsplit Adomvolz|zByvol*z|zByvol*z|zBy=vol*z|zByA+vol*z|zByA
15 4 6 13 14 syl3anc AdomvolByvol*yvol*z|zBy=vol*z|zByA+vol*z|zByA
16 inss1 yx|xBAy
17 16 7 sstrid AdomvolByvol*yyx|xBA
18 mblss AdomvolA
19 4 18 syl AdomvolByvol*yA
20 eqidd AdomvolByvol*yx|xBA=x|xBA
21 19 8 20 shft2rab AdomvolByvol*yA=z|zBx|xBA
22 21 ineq2d AdomvolByvol*yz|zByA=z|zByz|zBx|xBA
23 inrab z|zByz|zBx|xBA=z|zByzBx|xBA
24 elin zByx|xBAzByzBx|xBA
25 24 rabbii z|zByx|xBA=z|zByzBx|xBA
26 23 25 eqtr4i z|zByz|zBx|xBA=z|zByx|xBA
27 22 26 eqtrdi AdomvolByvol*yz|zByA=z|zByx|xBA
28 17 9 27 ovolshft AdomvolByvol*yvol*yx|xBA=vol*z|zByA
29 7 ssdifssd AdomvolByvol*yyx|xBA
30 21 difeq2d AdomvolByvol*yz|zByA=z|zByz|zBx|xBA
31 difrab z|zByz|zBx|xBA=z|zBy¬zBx|xBA
32 eldif zByx|xBAzBy¬zBx|xBA
33 32 rabbii z|zByx|xBA=z|zBy¬zBx|xBA
34 31 33 eqtr4i z|zByz|zBx|xBA=z|zByx|xBA
35 30 34 eqtrdi AdomvolByvol*yz|zByA=z|zByx|xBA
36 29 9 35 ovolshft AdomvolByvol*yvol*yx|xBA=vol*z|zByA
37 28 36 oveq12d AdomvolByvol*yvol*yx|xBA+vol*yx|xBA=vol*z|zByA+vol*z|zByA
38 15 11 37 3eqtr4d AdomvolByvol*yvol*y=vol*yx|xBA+vol*yx|xBA
39 38 expr AdomvolByvol*yvol*y=vol*yx|xBA+vol*yx|xBA
40 3 39 sylan2 AdomvolBy𝒫vol*yvol*y=vol*yx|xBA+vol*yx|xBA
41 40 ralrimiva AdomvolBy𝒫vol*yvol*y=vol*yx|xBA+vol*yx|xBA
42 ismbl x|xBAdomvolx|xBAy𝒫vol*yvol*y=vol*yx|xBA+vol*yx|xBA
43 2 41 42 sylanbrc AdomvolBx|xBAdomvol