Metamath Proof Explorer


Theorem iooltubd

Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooltubd.1 φA*
iooltubd.2 φB*
iooltubd.3 φCAB
Assertion iooltubd φC<B

Proof

Step Hyp Ref Expression
1 iooltubd.1 φA*
2 iooltubd.2 φB*
3 iooltubd.3 φCAB
4 iooltub A*B*CABC<B
5 1 2 3 4 syl3anc φC<B