Metamath Proof Explorer


Theorem ioopnfsup

Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion ioopnfsup A*A+∞supA+∞*<=+∞

Proof

Step Hyp Ref Expression
1 simpl A*A+∞A*
2 pnfxr +∞*
3 2 a1i A*A+∞+∞*
4 nltpnft A*A=+∞¬A<+∞
5 4 necon2abid A*A<+∞A+∞
6 5 biimpar A*A+∞A<+∞
7 ioon0 A*+∞*A+∞A<+∞
8 3 7 syldan A*A+∞A+∞A<+∞
9 6 8 mpbird A*A+∞A+∞
10 df-ioo .=x*,y*z*|x<zz<y
11 idd w*+∞*w<+∞w<+∞
12 xrltle w*+∞*w<+∞w+∞
13 idd A*w*A<wA<w
14 xrltle A*w*A<wAw
15 10 11 12 13 14 ixxub A*+∞*A+∞supA+∞*<=+∞
16 1 3 9 15 syl3anc A*A+∞supA+∞*<=+∞