Metamath Proof Explorer


Theorem ioorval

Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F=xran.ifx=00supx*<supx*<
Assertion ioorval Aran.FA=ifA=00supA*<supA*<

Proof

Step Hyp Ref Expression
1 ioorf.1 F=xran.ifx=00supx*<supx*<
2 eqeq1 x=Ax=A=
3 infeq1 x=Asupx*<=supA*<
4 supeq1 x=Asupx*<=supA*<
5 3 4 opeq12d x=Asupx*<supx*<=supA*<supA*<
6 2 5 ifbieq2d x=Aifx=00supx*<supx*<=ifA=00supA*<supA*<
7 opex 00V
8 opex supA*<supA*<V
9 7 8 ifex ifA=00supA*<supA*<V
10 6 1 9 fvmpt Aran.FA=ifA=00supA*<supA*<