Metamath Proof Explorer


Theorem iota5

Description: A method for computing iota. (Contributed by NM, 17-Sep-2013)

Ref Expression
Hypothesis iota5.1 φAVψx=A
Assertion iota5 φAVιx|ψ=A

Proof

Step Hyp Ref Expression
1 iota5.1 φAVψx=A
2 1 alrimiv φAVxψx=A
3 eqeq2 y=Ax=yx=A
4 3 bibi2d y=Aψx=yψx=A
5 4 albidv y=Axψx=yxψx=A
6 eqeq2 y=Aιx|ψ=yιx|ψ=A
7 5 6 imbi12d y=Axψx=yιx|ψ=yxψx=Aιx|ψ=A
8 iotaval xψx=yιx|ψ=y
9 7 8 vtoclg AVxψx=Aιx|ψ=A
10 9 adantl φAVxψx=Aιx|ψ=A
11 2 10 mpd φAVιx|ψ=A