Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Misc. Useful Theorems
iota5f
Next ⟩
ceqsralv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
iota5f
Description:
A method for computing iota.
(Contributed by
Scott Fenton
, 13-Dec-2017)
Ref
Expression
Hypotheses
iota5f.1
⊢
Ⅎ
x
φ
iota5f.2
⊢
Ⅎ
_
x
A
iota5f.3
⊢
φ
∧
A
∈
V
→
ψ
↔
x
=
A
Assertion
iota5f
⊢
φ
∧
A
∈
V
→
ι
x
|
ψ
=
A
Proof
Step
Hyp
Ref
Expression
1
iota5f.1
⊢
Ⅎ
x
φ
2
iota5f.2
⊢
Ⅎ
_
x
A
3
iota5f.3
⊢
φ
∧
A
∈
V
→
ψ
↔
x
=
A
4
2
nfel1
⊢
Ⅎ
x
A
∈
V
5
1
4
nfan
⊢
Ⅎ
x
φ
∧
A
∈
V
6
5
3
alrimi
⊢
φ
∧
A
∈
V
→
∀
x
ψ
↔
x
=
A
7
2
nfeq2
⊢
Ⅎ
x
y
=
A
8
eqeq2
⊢
y
=
A
→
x
=
y
↔
x
=
A
9
8
bibi2d
⊢
y
=
A
→
ψ
↔
x
=
y
↔
ψ
↔
x
=
A
10
7
9
albid
⊢
y
=
A
→
∀
x
ψ
↔
x
=
y
↔
∀
x
ψ
↔
x
=
A
11
eqeq2
⊢
y
=
A
→
ι
x
|
ψ
=
y
↔
ι
x
|
ψ
=
A
12
10
11
imbi12d
⊢
y
=
A
→
∀
x
ψ
↔
x
=
y
→
ι
x
|
ψ
=
y
↔
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
13
iotaval
⊢
∀
x
ψ
↔
x
=
y
→
ι
x
|
ψ
=
y
14
12
13
vtoclg
⊢
A
∈
V
→
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
15
14
adantl
⊢
φ
∧
A
∈
V
→
∀
x
ψ
↔
x
=
A
→
ι
x
|
ψ
=
A
16
6
15
mpd
⊢
φ
∧
A
∈
V
→
ι
x
|
ψ
=
A