Metamath Proof Explorer


Theorem iota5f

Description: A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017)

Ref Expression
Hypotheses iota5f.1 xφ
iota5f.2 _xA
iota5f.3 φAVψx=A
Assertion iota5f φAVιx|ψ=A

Proof

Step Hyp Ref Expression
1 iota5f.1 xφ
2 iota5f.2 _xA
3 iota5f.3 φAVψx=A
4 2 nfel1 xAV
5 1 4 nfan xφAV
6 5 3 alrimi φAVxψx=A
7 2 nfeq2 xy=A
8 eqeq2 y=Ax=yx=A
9 8 bibi2d y=Aψx=yψx=A
10 7 9 albid y=Axψx=yxψx=A
11 eqeq2 y=Aιx|ψ=yιx|ψ=A
12 10 11 imbi12d y=Axψx=yιx|ψ=yxψx=Aιx|ψ=A
13 iotaval xψx=yιx|ψ=y
14 12 13 vtoclg AVxψx=Aιx|ψ=A
15 14 adantl φAVxψx=Aιx|ψ=A
16 6 15 mpd φAVιx|ψ=A