Metamath Proof Explorer


Theorem iotaex

Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 6-Nov-2024)

Ref Expression
Assertion iotaex ιx|φV

Proof

Step Hyp Ref Expression
1 iotaval2 x|φ=yιx|φ=y
2 vex yV
3 1 2 eqeltrdi x|φ=yιx|φV
4 3 exlimiv yx|φ=yιx|φV
5 iotanul2 ¬yx|φ=yιx|φ=
6 0ex V
7 5 6 eqeltrdi ¬yx|φ=yιx|φV
8 4 7 pm2.61i ιx|φV