Metamath Proof Explorer


Theorem iotavalOLD

Description: Obsolete version of iotaval as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion iotavalOLD xφx=yιx|φ=y

Proof

Step Hyp Ref Expression
1 dfiota2 ιx|φ=z|xφx=z
2 sbeqalb yVxφx=yxφx=zy=z
3 2 elv xφx=yxφx=zy=z
4 3 ex xφx=yxφx=zy=z
5 equequ2 y=zx=yx=z
6 5 bibi2d y=zφx=yφx=z
7 6 biimpd y=zφx=yφx=z
8 7 alimdv y=zxφx=yxφx=z
9 8 com12 xφx=yy=zxφx=z
10 4 9 impbid xφx=yxφx=zy=z
11 equcom y=zz=y
12 10 11 bitrdi xφx=yxφx=zz=y
13 12 alrimiv xφx=yzxφx=zz=y
14 uniabio zxφx=zz=yz|xφx=z=y
15 13 14 syl xφx=yz|xφx=z=y
16 1 15 eqtrid xφx=yιx|φ=y