Metamath Proof Explorer


Theorem iotauni2

Description: Version of iotauni using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion iotauni2 yx|φ=yιx|φ=x|φ

Proof

Step Hyp Ref Expression
1 iotaval2 x|φ=yιx|φ=y
2 unieq x|φ=yx|φ=y
3 unisnv y=y
4 2 3 eqtr2di x|φ=yy=x|φ
5 1 4 eqtrd x|φ=yιx|φ=x|φ
6 5 exlimiv yx|φ=yιx|φ=x|φ