Metamath Proof Explorer


Theorem ipcnval

Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion ipcnval A B A B = A B + A B

Proof

Step Hyp Ref Expression
1 cjcl B B
2 remul A B A B = A B A B
3 1 2 sylan2 A B A B = A B A B
4 recj B B = B
5 4 adantl A B B = B
6 5 oveq2d A B A B = A B
7 imcj B B = B
8 7 adantl A B B = B
9 8 oveq2d A B A B = A B
10 imcl A A
11 10 recnd A A
12 imcl B B
13 12 recnd B B
14 mulneg2 A B A B = A B
15 11 13 14 syl2an A B A B = A B
16 9 15 eqtrd A B A B = A B
17 6 16 oveq12d A B A B A B = A B A B
18 recl A A
19 18 recnd A A
20 recl B B
21 20 recnd B B
22 mulcl A B A B
23 19 21 22 syl2an A B A B
24 mulcl A B A B
25 11 13 24 syl2an A B A B
26 23 25 subnegd A B A B A B = A B + A B
27 3 17 26 3eqtrd A B A B = A B + A B