Metamath Proof Explorer


Theorem ipdir

Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.g +˙=+W
ipdir.p ˙=+F
Assertion ipdir WPreHilAVBVCVA+˙B,˙C=A,˙C˙B,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.g +˙=+W
5 ipdir.p ˙=+F
6 eqid xVx,˙C=xVx,˙C
7 1 2 3 6 phllmhm WPreHilCVxVx,˙CWLMHomringLModF
8 7 3ad2antr3 WPreHilAVBVCVxVx,˙CWLMHomringLModF
9 lmghm xVx,˙CWLMHomringLModFxVx,˙CWGrpHomringLModF
10 8 9 syl WPreHilAVBVCVxVx,˙CWGrpHomringLModF
11 simpr1 WPreHilAVBVCVAV
12 simpr2 WPreHilAVBVCVBV
13 rlmplusg +F=+ringLModF
14 5 13 eqtri ˙=+ringLModF
15 3 4 14 ghmlin xVx,˙CWGrpHomringLModFAVBVxVx,˙CA+˙B=xVx,˙CA˙xVx,˙CB
16 10 11 12 15 syl3anc WPreHilAVBVCVxVx,˙CA+˙B=xVx,˙CA˙xVx,˙CB
17 phllmod WPreHilWLMod
18 3 4 lmodvacl WLModAVBVA+˙BV
19 17 18 syl3an1 WPreHilAVBVA+˙BV
20 19 3adant3r3 WPreHilAVBVCVA+˙BV
21 oveq1 x=A+˙Bx,˙C=A+˙B,˙C
22 ovex x,˙CV
23 21 6 22 fvmpt3i A+˙BVxVx,˙CA+˙B=A+˙B,˙C
24 20 23 syl WPreHilAVBVCVxVx,˙CA+˙B=A+˙B,˙C
25 oveq1 x=Ax,˙C=A,˙C
26 25 6 22 fvmpt3i AVxVx,˙CA=A,˙C
27 11 26 syl WPreHilAVBVCVxVx,˙CA=A,˙C
28 oveq1 x=Bx,˙C=B,˙C
29 28 6 22 fvmpt3i BVxVx,˙CB=B,˙C
30 12 29 syl WPreHilAVBVCVxVx,˙CB=B,˙C
31 27 30 oveq12d WPreHilAVBVCVxVx,˙CA˙xVx,˙CB=A,˙C˙B,˙C
32 16 24 31 3eqtr3d WPreHilAVBVCVA+˙B,˙C=A,˙C˙B,˙C