Metamath Proof Explorer


Theorem ipnm

Description: Norm expressed in terms of inner product. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipid.1 X=BaseSetU
ipid.6 N=normCVU
ipid.7 P=𝑖OLDU
Assertion ipnm UNrmCVecAXNA=APA

Proof

Step Hyp Ref Expression
1 ipid.1 X=BaseSetU
2 ipid.6 N=normCVU
3 ipid.7 P=𝑖OLDU
4 1 2 3 ipidsq UNrmCVecAXAPA=NA2
5 4 fveq2d UNrmCVecAXAPA=NA2
6 1 2 nvcl UNrmCVecAXNA
7 1 2 nvge0 UNrmCVecAX0NA
8 6 7 sqrtsqd UNrmCVecAXNA2=NA
9 5 8 eqtr2d UNrmCVecAXNA=APA