Metamath Proof Explorer


Theorem nvge0

Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)

Ref Expression
Hypotheses nvge0.1 X = BaseSet U
nvge0.6 N = norm CV U
Assertion nvge0 U NrmCVec A X 0 N A

Proof

Step Hyp Ref Expression
1 nvge0.1 X = BaseSet U
2 nvge0.6 N = norm CV U
3 2rp 2 +
4 3 a1i U NrmCVec A X 2 +
5 1 2 nvcl U NrmCVec A X N A
6 eqid 0 vec U = 0 vec U
7 6 2 nvz0 U NrmCVec N 0 vec U = 0
8 7 adantr U NrmCVec A X N 0 vec U = 0
9 1pneg1e0 1 + -1 = 0
10 9 oveq1i 1 + -1 𝑠OLD U A = 0 𝑠OLD U A
11 eqid 𝑠OLD U = 𝑠OLD U
12 1 11 6 nv0 U NrmCVec A X 0 𝑠OLD U A = 0 vec U
13 10 12 syl5req U NrmCVec A X 0 vec U = 1 + -1 𝑠OLD U A
14 neg1cn 1
15 ax-1cn 1
16 eqid + v U = + v U
17 1 16 11 nvdir U NrmCVec 1 1 A X 1 + -1 𝑠OLD U A = 1 𝑠OLD U A + v U -1 𝑠OLD U A
18 15 17 mp3anr1 U NrmCVec 1 A X 1 + -1 𝑠OLD U A = 1 𝑠OLD U A + v U -1 𝑠OLD U A
19 14 18 mpanr1 U NrmCVec A X 1 + -1 𝑠OLD U A = 1 𝑠OLD U A + v U -1 𝑠OLD U A
20 1 11 nvsid U NrmCVec A X 1 𝑠OLD U A = A
21 20 oveq1d U NrmCVec A X 1 𝑠OLD U A + v U -1 𝑠OLD U A = A + v U -1 𝑠OLD U A
22 13 19 21 3eqtrd U NrmCVec A X 0 vec U = A + v U -1 𝑠OLD U A
23 22 fveq2d U NrmCVec A X N 0 vec U = N A + v U -1 𝑠OLD U A
24 8 23 eqtr3d U NrmCVec A X 0 = N A + v U -1 𝑠OLD U A
25 1 11 nvscl U NrmCVec 1 A X -1 𝑠OLD U A X
26 14 25 mp3an2 U NrmCVec A X -1 𝑠OLD U A X
27 1 16 2 nvtri U NrmCVec A X -1 𝑠OLD U A X N A + v U -1 𝑠OLD U A N A + N -1 𝑠OLD U A
28 26 27 mpd3an3 U NrmCVec A X N A + v U -1 𝑠OLD U A N A + N -1 𝑠OLD U A
29 24 28 eqbrtrd U NrmCVec A X 0 N A + N -1 𝑠OLD U A
30 1 11 2 nvm1 U NrmCVec A X N -1 𝑠OLD U A = N A
31 30 oveq2d U NrmCVec A X N A + N -1 𝑠OLD U A = N A + N A
32 5 recnd U NrmCVec A X N A
33 32 2timesd U NrmCVec A X 2 N A = N A + N A
34 31 33 eqtr4d U NrmCVec A X N A + N -1 𝑠OLD U A = 2 N A
35 29 34 breqtrd U NrmCVec A X 0 2 N A
36 4 5 35 prodge0rd U NrmCVec A X 0 N A