Metamath Proof Explorer


Theorem isacs3

Description: A closure system is algebraic iff directed unions of closed sets are closed. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion isacs3 CACSXCMooreXs𝒫CtoIncsDirsetsC

Proof

Step Hyp Ref Expression
1 isacs3lem CACSXCMooreXs𝒫CtoIncsDirsetsC
2 eqid mrClsC=mrClsC
3 2 isacs4lem CMooreXs𝒫CtoIncsDirsetsCCMooreXt𝒫𝒫XtoInctDirsetmrClsCt=mrClsCt
4 2 isacs4 CACSXCMooreXt𝒫𝒫XtoInctDirsetmrClsCt=mrClsCt
5 3 4 sylibr CMooreXs𝒫CtoIncsDirsetsCCACSX
6 1 5 impbii CACSXCMooreXs𝒫CtoIncsDirsetsC