| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmre |
|
| 2 |
|
mresspw |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
sspwd |
|
| 5 |
4
|
sselda |
|
| 6 |
5
|
elpwid |
|
| 7 |
|
sspwuni |
|
| 8 |
6 7
|
sylib |
|
| 9 |
8
|
adantr |
|
| 10 |
|
elinel1 |
|
| 11 |
10
|
elpwid |
|
| 12 |
|
elinel2 |
|
| 13 |
|
fissuni |
|
| 14 |
11 12 13
|
syl2anc |
|
| 15 |
14
|
ad2antll |
|
| 16 |
1
|
ad3antrrr |
|
| 17 |
|
eqid |
|
| 18 |
|
simprr |
|
| 19 |
|
elinel1 |
|
| 20 |
19
|
elpwid |
|
| 21 |
20
|
unissd |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
8
|
ad2antrr |
|
| 24 |
22 23
|
sstrd |
|
| 25 |
16 17 18 24
|
mrcssd |
|
| 26 |
|
simpl |
|
| 27 |
20
|
adantl |
|
| 28 |
|
elinel2 |
|
| 29 |
28
|
adantl |
|
| 30 |
|
ipodrsfi |
|
| 31 |
26 27 29 30
|
syl3anc |
|
| 32 |
31
|
adantl |
|
| 33 |
1
|
ad3antrrr |
|
| 34 |
|
simprr |
|
| 35 |
|
elpwi |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
simprl |
|
| 39 |
37 38
|
sseldd |
|
| 40 |
17
|
mrcsscl |
|
| 41 |
33 34 39 40
|
syl3anc |
|
| 42 |
|
elssuni |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
41 43
|
sstrd |
|
| 45 |
32 44
|
rexlimddv |
|
| 46 |
45
|
anassrs |
|
| 47 |
46
|
adantrr |
|
| 48 |
47
|
adantlrr |
|
| 49 |
25 48
|
sstrd |
|
| 50 |
15 49
|
rexlimddv |
|
| 51 |
50
|
anassrs |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
17
|
acsfiel |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
9 52 54
|
mpbir2and |
|
| 56 |
55
|
ex |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
1 57
|
jca |
|