| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
dfss3 |
|
| 3 |
|
eluni2 |
|
| 4 |
3
|
ralbii |
|
| 5 |
2 4
|
sylbb |
|
| 6 |
5
|
adantr |
|
| 7 |
|
eleq2 |
|
| 8 |
7
|
ac6sfi |
|
| 9 |
1 6 8
|
syl2anc |
|
| 10 |
|
fimass |
|
| 11 |
|
vex |
|
| 12 |
11
|
imaex |
|
| 13 |
12
|
elpw |
|
| 14 |
10 13
|
sylibr |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
ffun |
|
| 17 |
16
|
ad2antrl |
|
| 18 |
|
simplr |
|
| 19 |
|
imafi |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
15 20
|
elind |
|
| 22 |
|
ffn |
|
| 23 |
22
|
adantr |
|
| 24 |
|
ssidd |
|
| 25 |
|
simpr |
|
| 26 |
|
fnfvima |
|
| 27 |
23 24 25 26
|
syl3anc |
|
| 28 |
|
elssuni |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
sseld |
|
| 31 |
30
|
ralimdva |
|
| 32 |
31
|
imp |
|
| 33 |
|
dfss3 |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
34
|
adantl |
|
| 36 |
|
unieq |
|
| 37 |
36
|
sseq2d |
|
| 38 |
37
|
rspcev |
|
| 39 |
21 35 38
|
syl2anc |
|
| 40 |
9 39
|
exlimddv |
|