Description: Given a finite subset A of the range of a function, there exists a finite subset of the domain whose image is A . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fipreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | dfss3 | |
|
3 | fvelrnb | |
|
4 | 3 | ralbidv | |
5 | 2 4 | bitrid | |
6 | 5 | biimpa | |
7 | 6 | 3adant3 | |
8 | fveqeq2 | |
|
9 | 8 | ac6sfi | |
10 | 1 7 9 | syl2anc | |
11 | fimass | |
|
12 | vex | |
|
13 | 12 | imaex | |
14 | 13 | elpw | |
15 | 11 14 | sylibr | |
16 | 15 | ad2antrl | |
17 | ffun | |
|
18 | 17 | ad2antrl | |
19 | simpl3 | |
|
20 | imafi | |
|
21 | 18 19 20 | syl2anc | |
22 | 16 21 | elind | |
23 | fvco3 | |
|
24 | fvresi | |
|
25 | 24 | adantl | |
26 | 23 25 | eqeq12d | |
27 | 26 | ralbidva | |
28 | 27 | biimprd | |
29 | 28 | adantl | |
30 | 29 | impr | |
31 | simpl1 | |
|
32 | ffn | |
|
33 | 32 | ad2antrl | |
34 | frn | |
|
35 | 34 | ad2antrl | |
36 | fnco | |
|
37 | 31 33 35 36 | syl3anc | |
38 | fnresi | |
|
39 | eqfnfv | |
|
40 | 37 38 39 | sylancl | |
41 | 30 40 | mpbird | |
42 | 41 | imaeq1d | |
43 | imaco | |
|
44 | ssid | |
|
45 | resiima | |
|
46 | 44 45 | ax-mp | |
47 | 42 43 46 | 3eqtr3g | |
48 | imaeq2 | |
|
49 | 48 | eqeq1d | |
50 | 49 | rspcev | |
51 | 22 47 50 | syl2anc | |
52 | 10 51 | exlimddv | |