Metamath Proof Explorer


Theorem finsschain

Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub and others. (Contributed by Jeff Hankins, 25-Jan-2010) (Proof shortened by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion finsschain A[⊂]OrABFinBAzABz

Proof

Step Hyp Ref Expression
1 sseq1 a=aAA
2 sseq1 a=azz
3 2 rexbidv a=zAazzAz
4 1 3 imbi12d a=aAzAazAzAz
5 4 imbi2d a=A[⊂]OrAaAzAazA[⊂]OrAAzAz
6 sseq1 a=baAbA
7 sseq1 a=bazbz
8 7 rexbidv a=bzAazzAbz
9 6 8 imbi12d a=baAzAazbAzAbz
10 9 imbi2d a=bA[⊂]OrAaAzAazA[⊂]OrAbAzAbz
11 sseq1 a=bcaAbcA
12 sseq1 a=bcazbcz
13 12 rexbidv a=bczAazzAbcz
14 11 13 imbi12d a=bcaAzAazbcAzAbcz
15 14 imbi2d a=bcA[⊂]OrAaAzAazA[⊂]OrAbcAzAbcz
16 sseq1 a=BaABA
17 sseq1 a=BazBz
18 17 rexbidv a=BzAazzABz
19 16 18 imbi12d a=BaAzAazBAzABz
20 19 imbi2d a=BA[⊂]OrAaAzAazA[⊂]OrABAzABz
21 0ss z
22 21 rgenw zAz
23 r19.2z AzAzzAz
24 22 23 mpan2 AzAz
25 24 adantr A[⊂]OrAzAz
26 25 a1d A[⊂]OrAAzAz
27 id bcAbcA
28 27 unssad bcAbA
29 28 imim1i bAzAbzbcAzAbz
30 sseq2 z=wbzbw
31 30 cbvrexvw zAbzwAbw
32 simpr A[⊂]OrAbcAbcA
33 32 unssbd A[⊂]OrAbcAcA
34 vex cV
35 34 snss cAcA
36 33 35 sylibr A[⊂]OrAbcAcA
37 eluni2 cAuAcu
38 36 37 sylib A[⊂]OrAbcAuAcu
39 reeanv uAwAcubwuAcuwAbw
40 simpllr A[⊂]OrAbcAuAwAcubw[⊂]OrA
41 simprlr A[⊂]OrAbcAuAwAcubwwA
42 simprll A[⊂]OrAbcAuAwAcubwuA
43 sorpssun [⊂]OrAwAuAwuA
44 40 41 42 43 syl12anc A[⊂]OrAbcAuAwAcubwwuA
45 simprrr A[⊂]OrAbcAuAwAcubwbw
46 simprrl A[⊂]OrAbcAuAwAcubwcu
47 46 snssd A[⊂]OrAbcAuAwAcubwcu
48 unss12 bwcubcwu
49 45 47 48 syl2anc A[⊂]OrAbcAuAwAcubwbcwu
50 sseq2 z=wubczbcwu
51 50 rspcev wuAbcwuzAbcz
52 44 49 51 syl2anc A[⊂]OrAbcAuAwAcubwzAbcz
53 52 expr A[⊂]OrAbcAuAwAcubwzAbcz
54 53 rexlimdvva A[⊂]OrAbcAuAwAcubwzAbcz
55 39 54 biimtrrid A[⊂]OrAbcAuAcuwAbwzAbcz
56 38 55 mpand A[⊂]OrAbcAwAbwzAbcz
57 31 56 biimtrid A[⊂]OrAbcAzAbzzAbcz
58 57 ex A[⊂]OrAbcAzAbzzAbcz
59 58 a2d A[⊂]OrAbcAzAbzbcAzAbcz
60 29 59 syl5 A[⊂]OrAbAzAbzbcAzAbcz
61 60 a2i A[⊂]OrAbAzAbzA[⊂]OrAbcAzAbcz
62 61 a1i bFinA[⊂]OrAbAzAbzA[⊂]OrAbcAzAbcz
63 5 10 15 20 26 62 findcard2 BFinA[⊂]OrABAzABz
64 63 com12 A[⊂]OrABFinBAzABz
65 64 imp32 A[⊂]OrABFinBAzABz