| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
|
| 2 |
|
sseq1 |
|
| 3 |
2
|
rexbidv |
|
| 4 |
1 3
|
imbi12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
sseq1 |
|
| 7 |
|
sseq1 |
|
| 8 |
7
|
rexbidv |
|
| 9 |
6 8
|
imbi12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
sseq1 |
|
| 12 |
|
sseq1 |
|
| 13 |
12
|
rexbidv |
|
| 14 |
11 13
|
imbi12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
sseq1 |
|
| 17 |
|
sseq1 |
|
| 18 |
17
|
rexbidv |
|
| 19 |
16 18
|
imbi12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
0ss |
|
| 22 |
21
|
rgenw |
|
| 23 |
|
r19.2z |
|
| 24 |
22 23
|
mpan2 |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
a1d |
|
| 27 |
|
id |
|
| 28 |
27
|
unssad |
|
| 29 |
28
|
imim1i |
|
| 30 |
|
sseq2 |
|
| 31 |
30
|
cbvrexvw |
|
| 32 |
|
simpr |
|
| 33 |
32
|
unssbd |
|
| 34 |
|
vex |
|
| 35 |
34
|
snss |
|
| 36 |
33 35
|
sylibr |
|
| 37 |
|
eluni2 |
|
| 38 |
36 37
|
sylib |
|
| 39 |
|
reeanv |
|
| 40 |
|
simpllr |
|
| 41 |
|
simprlr |
|
| 42 |
|
simprll |
|
| 43 |
|
sorpssun |
|
| 44 |
40 41 42 43
|
syl12anc |
|
| 45 |
|
simprrr |
|
| 46 |
|
simprrl |
|
| 47 |
46
|
snssd |
|
| 48 |
|
unss12 |
|
| 49 |
45 47 48
|
syl2anc |
|
| 50 |
|
sseq2 |
|
| 51 |
50
|
rspcev |
|
| 52 |
44 49 51
|
syl2anc |
|
| 53 |
52
|
expr |
|
| 54 |
53
|
rexlimdvva |
|
| 55 |
39 54
|
biimtrrid |
|
| 56 |
38 55
|
mpand |
|
| 57 |
31 56
|
biimtrid |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
a2d |
|
| 60 |
29 59
|
syl5 |
|
| 61 |
60
|
a2i |
|
| 62 |
61
|
a1i |
|
| 63 |
5 10 15 20 26 62
|
findcard2 |
|
| 64 |
63
|
com12 |
|
| 65 |
64
|
imp32 |
|