Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
|
2 |
|
sseq1 |
|
3 |
2
|
rexbidv |
|
4 |
1 3
|
imbi12d |
|
5 |
4
|
imbi2d |
|
6 |
|
sseq1 |
|
7 |
|
sseq1 |
|
8 |
7
|
rexbidv |
|
9 |
6 8
|
imbi12d |
|
10 |
9
|
imbi2d |
|
11 |
|
sseq1 |
|
12 |
|
sseq1 |
|
13 |
12
|
rexbidv |
|
14 |
11 13
|
imbi12d |
|
15 |
14
|
imbi2d |
|
16 |
|
sseq1 |
|
17 |
|
sseq1 |
|
18 |
17
|
rexbidv |
|
19 |
16 18
|
imbi12d |
|
20 |
19
|
imbi2d |
|
21 |
|
0ss |
|
22 |
21
|
rgenw |
|
23 |
|
r19.2z |
|
24 |
22 23
|
mpan2 |
|
25 |
24
|
adantr |
|
26 |
25
|
a1d |
|
27 |
|
id |
|
28 |
27
|
unssad |
|
29 |
28
|
imim1i |
|
30 |
|
sseq2 |
|
31 |
30
|
cbvrexvw |
|
32 |
|
simpr |
|
33 |
32
|
unssbd |
|
34 |
|
vex |
|
35 |
34
|
snss |
|
36 |
33 35
|
sylibr |
|
37 |
|
eluni2 |
|
38 |
36 37
|
sylib |
|
39 |
|
reeanv |
|
40 |
|
simpllr |
|
41 |
|
simprlr |
|
42 |
|
simprll |
|
43 |
|
sorpssun |
|
44 |
40 41 42 43
|
syl12anc |
|
45 |
|
simprrr |
|
46 |
|
simprrl |
|
47 |
46
|
snssd |
|
48 |
|
unss12 |
|
49 |
45 47 48
|
syl2anc |
|
50 |
|
sseq2 |
|
51 |
50
|
rspcev |
|
52 |
44 49 51
|
syl2anc |
|
53 |
52
|
expr |
|
54 |
53
|
rexlimdvva |
|
55 |
39 54
|
syl5bir |
|
56 |
38 55
|
mpand |
|
57 |
31 56
|
syl5bi |
|
58 |
57
|
ex |
|
59 |
58
|
a2d |
|
60 |
29 59
|
syl5 |
|
61 |
60
|
a2i |
|
62 |
61
|
a1i |
|
63 |
5 10 15 20 26 62
|
findcard2 |
|
64 |
63
|
com12 |
|
65 |
64
|
imp32 |
|