Metamath Proof Explorer


Theorem finsschain

Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub and others. (Contributed by Jeff Hankins, 25-Jan-2010) (Proof shortened by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion finsschain A [⊂] Or A B Fin B A z A B z

Proof

Step Hyp Ref Expression
1 sseq1 a = a A A
2 sseq1 a = a z z
3 2 rexbidv a = z A a z z A z
4 1 3 imbi12d a = a A z A a z A z A z
5 4 imbi2d a = A [⊂] Or A a A z A a z A [⊂] Or A A z A z
6 sseq1 a = b a A b A
7 sseq1 a = b a z b z
8 7 rexbidv a = b z A a z z A b z
9 6 8 imbi12d a = b a A z A a z b A z A b z
10 9 imbi2d a = b A [⊂] Or A a A z A a z A [⊂] Or A b A z A b z
11 sseq1 a = b c a A b c A
12 sseq1 a = b c a z b c z
13 12 rexbidv a = b c z A a z z A b c z
14 11 13 imbi12d a = b c a A z A a z b c A z A b c z
15 14 imbi2d a = b c A [⊂] Or A a A z A a z A [⊂] Or A b c A z A b c z
16 sseq1 a = B a A B A
17 sseq1 a = B a z B z
18 17 rexbidv a = B z A a z z A B z
19 16 18 imbi12d a = B a A z A a z B A z A B z
20 19 imbi2d a = B A [⊂] Or A a A z A a z A [⊂] Or A B A z A B z
21 0ss z
22 21 rgenw z A z
23 r19.2z A z A z z A z
24 22 23 mpan2 A z A z
25 24 adantr A [⊂] Or A z A z
26 25 a1d A [⊂] Or A A z A z
27 id b c A b c A
28 27 unssad b c A b A
29 28 imim1i b A z A b z b c A z A b z
30 sseq2 z = w b z b w
31 30 cbvrexvw z A b z w A b w
32 simpr A [⊂] Or A b c A b c A
33 32 unssbd A [⊂] Or A b c A c A
34 vex c V
35 34 snss c A c A
36 33 35 sylibr A [⊂] Or A b c A c A
37 eluni2 c A u A c u
38 36 37 sylib A [⊂] Or A b c A u A c u
39 reeanv u A w A c u b w u A c u w A b w
40 simpllr A [⊂] Or A b c A u A w A c u b w [⊂] Or A
41 simprlr A [⊂] Or A b c A u A w A c u b w w A
42 simprll A [⊂] Or A b c A u A w A c u b w u A
43 sorpssun [⊂] Or A w A u A w u A
44 40 41 42 43 syl12anc A [⊂] Or A b c A u A w A c u b w w u A
45 simprrr A [⊂] Or A b c A u A w A c u b w b w
46 simprrl A [⊂] Or A b c A u A w A c u b w c u
47 46 snssd A [⊂] Or A b c A u A w A c u b w c u
48 unss12 b w c u b c w u
49 45 47 48 syl2anc A [⊂] Or A b c A u A w A c u b w b c w u
50 sseq2 z = w u b c z b c w u
51 50 rspcev w u A b c w u z A b c z
52 44 49 51 syl2anc A [⊂] Or A b c A u A w A c u b w z A b c z
53 52 expr A [⊂] Or A b c A u A w A c u b w z A b c z
54 53 rexlimdvva A [⊂] Or A b c A u A w A c u b w z A b c z
55 39 54 syl5bir A [⊂] Or A b c A u A c u w A b w z A b c z
56 38 55 mpand A [⊂] Or A b c A w A b w z A b c z
57 31 56 syl5bi A [⊂] Or A b c A z A b z z A b c z
58 57 ex A [⊂] Or A b c A z A b z z A b c z
59 58 a2d A [⊂] Or A b c A z A b z b c A z A b c z
60 29 59 syl5 A [⊂] Or A b A z A b z b c A z A b c z
61 60 a2i A [⊂] Or A b A z A b z A [⊂] Or A b c A z A b c z
62 61 a1i b Fin A [⊂] Or A b A z A b z A [⊂] Or A b c A z A b c z
63 5 10 15 20 26 62 findcard2 B Fin A [⊂] Or A B A z A B z
64 63 com12 A [⊂] Or A B Fin B A z A B z
65 64 imp32 A [⊂] Or A B Fin B A z A B z