Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub and others. (Contributed by Jeff Hankins, 25-Jan-2010) (Proof shortened by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 18-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | finsschain | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |
|
2 | sseq1 | |
|
3 | 2 | rexbidv | |
4 | 1 3 | imbi12d | |
5 | 4 | imbi2d | |
6 | sseq1 | |
|
7 | sseq1 | |
|
8 | 7 | rexbidv | |
9 | 6 8 | imbi12d | |
10 | 9 | imbi2d | |
11 | sseq1 | |
|
12 | sseq1 | |
|
13 | 12 | rexbidv | |
14 | 11 13 | imbi12d | |
15 | 14 | imbi2d | |
16 | sseq1 | |
|
17 | sseq1 | |
|
18 | 17 | rexbidv | |
19 | 16 18 | imbi12d | |
20 | 19 | imbi2d | |
21 | 0ss | |
|
22 | 21 | rgenw | |
23 | r19.2z | |
|
24 | 22 23 | mpan2 | |
25 | 24 | adantr | |
26 | 25 | a1d | |
27 | id | |
|
28 | 27 | unssad | |
29 | 28 | imim1i | |
30 | sseq2 | |
|
31 | 30 | cbvrexvw | |
32 | simpr | |
|
33 | 32 | unssbd | |
34 | vex | |
|
35 | 34 | snss | |
36 | 33 35 | sylibr | |
37 | eluni2 | |
|
38 | 36 37 | sylib | |
39 | reeanv | |
|
40 | simpllr | |
|
41 | simprlr | |
|
42 | simprll | |
|
43 | sorpssun | |
|
44 | 40 41 42 43 | syl12anc | |
45 | simprrr | |
|
46 | simprrl | |
|
47 | 46 | snssd | |
48 | unss12 | |
|
49 | 45 47 48 | syl2anc | |
50 | sseq2 | |
|
51 | 50 | rspcev | |
52 | 44 49 51 | syl2anc | |
53 | 52 | expr | |
54 | 53 | rexlimdvva | |
55 | 39 54 | biimtrrid | |
56 | 38 55 | mpand | |
57 | 31 56 | biimtrid | |
58 | 57 | ex | |
59 | 58 | a2d | |
60 | 29 59 | syl5 | |
61 | 60 | a2i | |
62 | 61 | a1i | |
63 | 5 10 15 20 26 62 | findcard2 | |
64 | 63 | com12 | |
65 | 64 | imp32 | |