Description: The Alexander Subbase Theorem: If B is a subbase for the topology J , and any cover taken from B has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | alexsub.1 | |
|
alexsub.2 | |
||
alexsub.3 | |
||
alexsub.4 | |
||
Assertion | alexsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexsub.1 | |
|
2 | alexsub.2 | |
|
3 | alexsub.3 | |
|
4 | alexsub.4 | |
|
5 | 1 | adantr | |
6 | 2 | adantr | |
7 | 3 | adantr | |
8 | 4 | adantlr | |
9 | simprl | |
|
10 | simprr | |
|
11 | 5 6 7 8 9 10 | alexsublem | |
12 | 11 | pm2.21i | |
13 | 12 | expr | |
14 | 13 | pm2.01d | |
15 | 14 | neqned | |
16 | 15 | ralrimiva | |
17 | fibas | |
|
18 | tgtopon | |
|
19 | 17 18 | ax-mp | |
20 | 3 19 | eqeltrdi | |
21 | 1 | elexd | |
22 | 2 21 | eqeltrrd | |
23 | uniexb | |
|
24 | 22 23 | sylibr | |
25 | fiuni | |
|
26 | 24 25 | syl | |
27 | 2 26 | eqtrd | |
28 | 27 | fveq2d | |
29 | 20 28 | eleqtrrd | |
30 | ufilcmp | |
|
31 | 1 29 30 | syl2anc | |
32 | 16 31 | mpbird | |