Metamath Proof Explorer


Theorem alexsub

Description: The Alexander Subbase Theorem: If B is a subbase for the topology J , and any cover taken from B has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses alexsub.1 φ X UFL
alexsub.2 φ X = B
alexsub.3 φ J = topGen fi B
alexsub.4 φ x B X = x y 𝒫 x Fin X = y
Assertion alexsub φ J Comp

Proof

Step Hyp Ref Expression
1 alexsub.1 φ X UFL
2 alexsub.2 φ X = B
3 alexsub.3 φ J = topGen fi B
4 alexsub.4 φ x B X = x y 𝒫 x Fin X = y
5 1 adantr φ f UFil X J fLim f = X UFL
6 2 adantr φ f UFil X J fLim f = X = B
7 3 adantr φ f UFil X J fLim f = J = topGen fi B
8 4 adantlr φ f UFil X J fLim f = x B X = x y 𝒫 x Fin X = y
9 simprl φ f UFil X J fLim f = f UFil X
10 simprr φ f UFil X J fLim f = J fLim f =
11 5 6 7 8 9 10 alexsublem ¬ φ f UFil X J fLim f =
12 11 pm2.21i φ f UFil X J fLim f = ¬ J fLim f =
13 12 expr φ f UFil X J fLim f = ¬ J fLim f =
14 13 pm2.01d φ f UFil X ¬ J fLim f =
15 14 neqned φ f UFil X J fLim f
16 15 ralrimiva φ f UFil X J fLim f
17 fibas fi B TopBases
18 tgtopon fi B TopBases topGen fi B TopOn fi B
19 17 18 ax-mp topGen fi B TopOn fi B
20 3 19 eqeltrdi φ J TopOn fi B
21 1 elexd φ X V
22 2 21 eqeltrrd φ B V
23 uniexb B V B V
24 22 23 sylibr φ B V
25 fiuni B V B = fi B
26 24 25 syl φ B = fi B
27 2 26 eqtrd φ X = fi B
28 27 fveq2d φ TopOn X = TopOn fi B
29 20 28 eleqtrrd φ J TopOn X
30 ufilcmp X UFL J TopOn X J Comp f UFil X J fLim f
31 1 29 30 syl2anc φ J Comp f UFil X J fLim f
32 16 31 mpbird φ J Comp