Metamath Proof Explorer


Theorem alexsub

Description: The Alexander Subbase Theorem: If B is a subbase for the topology J , and any cover taken from B has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses alexsub.1 φXUFL
alexsub.2 φX=B
alexsub.3 φJ=topGenfiB
alexsub.4 φxBX=xy𝒫xFinX=y
Assertion alexsub φJComp

Proof

Step Hyp Ref Expression
1 alexsub.1 φXUFL
2 alexsub.2 φX=B
3 alexsub.3 φJ=topGenfiB
4 alexsub.4 φxBX=xy𝒫xFinX=y
5 1 adantr φfUFilXJfLimf=XUFL
6 2 adantr φfUFilXJfLimf=X=B
7 3 adantr φfUFilXJfLimf=J=topGenfiB
8 4 adantlr φfUFilXJfLimf=xBX=xy𝒫xFinX=y
9 simprl φfUFilXJfLimf=fUFilX
10 simprr φfUFilXJfLimf=JfLimf=
11 5 6 7 8 9 10 alexsublem ¬φfUFilXJfLimf=
12 11 pm2.21i φfUFilXJfLimf=¬JfLimf=
13 12 expr φfUFilXJfLimf=¬JfLimf=
14 13 pm2.01d φfUFilX¬JfLimf=
15 14 neqned φfUFilXJfLimf
16 15 ralrimiva φfUFilXJfLimf
17 fibas fiBTopBases
18 tgtopon fiBTopBasestopGenfiBTopOnfiB
19 17 18 ax-mp topGenfiBTopOnfiB
20 3 19 eqeltrdi φJTopOnfiB
21 1 elexd φXV
22 2 21 eqeltrrd φBV
23 uniexb BVBV
24 22 23 sylibr φBV
25 fiuni BVB=fiB
26 24 25 syl φB=fiB
27 2 26 eqtrd φX=fiB
28 27 fveq2d φTopOnX=TopOnfiB
29 20 28 eleqtrrd φJTopOnX
30 ufilcmp XUFLJTopOnXJCompfUFilXJfLimf
31 1 29 30 syl2anc φJCompfUFilXJfLimf
32 16 31 mpbird φJComp