| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alexsub.1 |
|
| 2 |
|
alexsub.2 |
|
| 3 |
|
alexsub.3 |
|
| 4 |
|
alexsub.4 |
|
| 5 |
|
alexsub.5 |
|
| 6 |
|
alexsub.6 |
|
| 7 |
|
eldif |
|
| 8 |
3
|
eleq2d |
|
| 9 |
8
|
anbi1d |
|
| 10 |
9
|
biimpa |
|
| 11 |
10
|
adantlr |
|
| 12 |
|
tg2 |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
ufilfil |
|
| 15 |
5 14
|
syl |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
5
|
elfvexd |
|
| 18 |
2 17
|
eqeltrrd |
|
| 19 |
|
uniexb |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
|
elfi2 |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
adantr |
|
| 24 |
15
|
ad2antrr |
|
| 25 |
|
simplrr |
|
| 26 |
|
intss1 |
|
| 27 |
26
|
adantl |
|
| 28 |
|
simplr |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
|
eldifsn |
|
| 32 |
31
|
simplbi |
|
| 33 |
32
|
ad2antrl |
|
| 34 |
|
elfpw |
|
| 35 |
34
|
simplbi |
|
| 36 |
33 35
|
syl |
|
| 37 |
36
|
sselda |
|
| 38 |
37
|
anasss |
|
| 39 |
38
|
anim1i |
|
| 40 |
|
eldif |
|
| 41 |
39 40
|
sylibr |
|
| 42 |
|
elunii |
|
| 43 |
30 41 42
|
syl2anc |
|
| 44 |
43
|
ex |
|
| 45 |
25 44
|
mt3d |
|
| 46 |
45
|
expr |
|
| 47 |
46
|
ssrdv |
|
| 48 |
|
eldifsni |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
|
elinel2 |
|
| 51 |
33 50
|
syl |
|
| 52 |
|
elfir |
|
| 53 |
24 47 49 51 52
|
syl13anc |
|
| 54 |
|
filfi |
|
| 55 |
24 54
|
syl |
|
| 56 |
53 55
|
eleqtrd |
|
| 57 |
56
|
expr |
|
| 58 |
|
eleq2 |
|
| 59 |
|
eleq1 |
|
| 60 |
58 59
|
imbi12d |
|
| 61 |
57 60
|
syl5ibrcom |
|
| 62 |
61
|
rexlimdva |
|
| 63 |
23 62
|
sylbid |
|
| 64 |
63
|
imp32 |
|
| 65 |
64
|
adantrrr |
|
| 66 |
65
|
adantlr |
|
| 67 |
|
elssuni |
|
| 68 |
67
|
ad2antrl |
|
| 69 |
|
fibas |
|
| 70 |
|
tgtopon |
|
| 71 |
69 70
|
ax-mp |
|
| 72 |
3 71
|
eqeltrdi |
|
| 73 |
|
fiuni |
|
| 74 |
20 73
|
syl |
|
| 75 |
2 74
|
eqtrd |
|
| 76 |
75
|
fveq2d |
|
| 77 |
72 76
|
eleqtrrd |
|
| 78 |
|
toponuni |
|
| 79 |
77 78
|
syl |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
68 80
|
sseqtrrd |
|
| 82 |
81
|
adantr |
|
| 83 |
|
simprrr |
|
| 84 |
|
filss |
|
| 85 |
16 66 82 83 84
|
syl13anc |
|
| 86 |
13 85
|
rexlimddv |
|
| 87 |
86
|
expr |
|
| 88 |
87
|
ralrimiva |
|
| 89 |
88
|
expr |
|
| 90 |
89
|
imdistanda |
|
| 91 |
7 90
|
biimtrid |
|
| 92 |
|
flimopn |
|
| 93 |
77 15 92
|
syl2anc |
|
| 94 |
91 93
|
sylibrd |
|
| 95 |
94
|
ssrdv |
|
| 96 |
|
sseq0 |
|
| 97 |
95 6 96
|
syl2anc |
|
| 98 |
|
ssdif0 |
|
| 99 |
97 98
|
sylibr |
|
| 100 |
|
difss |
|
| 101 |
100
|
unissi |
|
| 102 |
101 2
|
sseqtrrid |
|
| 103 |
99 102
|
eqssd |
|
| 104 |
103 100
|
jctil |
|
| 105 |
20
|
difexd |
|
| 106 |
105
|
adantr |
|
| 107 |
|
sseq1 |
|
| 108 |
|
unieq |
|
| 109 |
108
|
eqeq2d |
|
| 110 |
107 109
|
anbi12d |
|
| 111 |
110
|
anbi2d |
|
| 112 |
|
pweq |
|
| 113 |
112
|
ineq1d |
|
| 114 |
113
|
rexeqdv |
|
| 115 |
111 114
|
imbi12d |
|
| 116 |
115 4
|
vtoclg |
|
| 117 |
106 116
|
mpcom |
|
| 118 |
104 117
|
mpdan |
|
| 119 |
|
unieq |
|
| 120 |
|
uni0 |
|
| 121 |
119 120
|
eqtrdi |
|
| 122 |
121
|
neeq2d |
|
| 123 |
|
difssd |
|
| 124 |
123
|
ralrimivw |
|
| 125 |
|
riinn0 |
|
| 126 |
124 125
|
sylan |
|
| 127 |
17
|
ad2antrr |
|
| 128 |
127
|
difexd |
|
| 129 |
128
|
ralrimivw |
|
| 130 |
|
dfiin2g |
|
| 131 |
129 130
|
syl |
|
| 132 |
|
eqid |
|
| 133 |
132
|
rnmpt |
|
| 134 |
133
|
inteqi |
|
| 135 |
131 134
|
eqtr4di |
|
| 136 |
126 135
|
eqtrd |
|
| 137 |
15
|
ad2antrr |
|
| 138 |
|
elfpw |
|
| 139 |
138
|
simplbi |
|
| 140 |
139
|
ad2antlr |
|
| 141 |
140
|
sselda |
|
| 142 |
141
|
eldifbd |
|
| 143 |
5
|
ad3antrrr |
|
| 144 |
140
|
difss2d |
|
| 145 |
144
|
sselda |
|
| 146 |
|
elssuni |
|
| 147 |
145 146
|
syl |
|
| 148 |
2
|
ad3antrrr |
|
| 149 |
147 148
|
sseqtrrd |
|
| 150 |
|
ufilb |
|
| 151 |
143 149 150
|
syl2anc |
|
| 152 |
142 151
|
mpbid |
|
| 153 |
152
|
fmpttd |
|
| 154 |
153
|
frnd |
|
| 155 |
132 152
|
dmmptd |
|
| 156 |
|
simpr |
|
| 157 |
155 156
|
eqnetrd |
|
| 158 |
|
dm0rn0 |
|
| 159 |
158
|
necon3bii |
|
| 160 |
157 159
|
sylib |
|
| 161 |
|
elinel2 |
|
| 162 |
161
|
ad2antlr |
|
| 163 |
|
abrexfi |
|
| 164 |
133 163
|
eqeltrid |
|
| 165 |
162 164
|
syl |
|
| 166 |
|
filintn0 |
|
| 167 |
137 154 160 165 166
|
syl13anc |
|
| 168 |
136 167
|
eqnetrd |
|
| 169 |
|
disj3 |
|
| 170 |
169
|
necon3bii |
|
| 171 |
168 170
|
sylib |
|
| 172 |
|
iundif2 |
|
| 173 |
|
dfss4 |
|
| 174 |
149 173
|
sylib |
|
| 175 |
174
|
iuneq2dv |
|
| 176 |
|
uniiun |
|
| 177 |
175 176
|
eqtr4di |
|
| 178 |
172 177
|
eqtr3id |
|
| 179 |
171 178
|
neeqtrd |
|
| 180 |
15
|
adantr |
|
| 181 |
|
filtop |
|
| 182 |
|
fileln0 |
|
| 183 |
180 181 182
|
syl2anc2 |
|
| 184 |
122 179 183
|
pm2.61ne |
|
| 185 |
184
|
neneqd |
|
| 186 |
185
|
nrexdv |
|
| 187 |
118 186
|
pm2.65i |
|