| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alexsubALT.1 |
|
| 2 |
1
|
alexsubALTlem1 |
|
| 3 |
1
|
alexsubALTlem4 |
|
| 4 |
|
velpw |
|
| 5 |
|
eleq2 |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
eluni |
|
| 8 |
|
ssel |
|
| 9 |
|
eleq2 |
|
| 10 |
|
tg2 |
|
| 11 |
10
|
ex |
|
| 12 |
9 11
|
biimtrdi |
|
| 13 |
8 12
|
sylan9r |
|
| 14 |
13
|
3impia |
|
| 15 |
|
sseq2 |
|
| 16 |
15
|
rspcev |
|
| 17 |
16
|
ex |
|
| 18 |
17
|
3ad2ant3 |
|
| 19 |
18
|
anim2d |
|
| 20 |
19
|
reximdv |
|
| 21 |
14 20
|
syld |
|
| 22 |
21
|
3expia |
|
| 23 |
22
|
com23 |
|
| 24 |
23
|
impd |
|
| 25 |
24
|
exlimdv |
|
| 26 |
7 25
|
biimtrid |
|
| 27 |
26
|
3adant3 |
|
| 28 |
6 27
|
sylbid |
|
| 29 |
|
ssel |
|
| 30 |
|
elunii |
|
| 31 |
30
|
expcom |
|
| 32 |
6
|
biimprd |
|
| 33 |
31 32
|
sylan9r |
|
| 34 |
29 33
|
syl9r |
|
| 35 |
34
|
rexlimdva |
|
| 36 |
35
|
com23 |
|
| 37 |
36
|
impd |
|
| 38 |
37
|
rexlimdvw |
|
| 39 |
28 38
|
impbid |
|
| 40 |
|
elunirab |
|
| 41 |
39 40
|
bitr4di |
|
| 42 |
41
|
eqrdv |
|
| 43 |
|
ssrab2 |
|
| 44 |
|
fvex |
|
| 45 |
44
|
elpw2 |
|
| 46 |
43 45
|
mpbir |
|
| 47 |
|
unieq |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
|
pweq |
|
| 50 |
49
|
ineq1d |
|
| 51 |
50
|
rexeqdv |
|
| 52 |
48 51
|
imbi12d |
|
| 53 |
52
|
rspcv |
|
| 54 |
46 53
|
ax-mp |
|
| 55 |
42 54
|
syl5com |
|
| 56 |
|
elfpw |
|
| 57 |
|
ssel |
|
| 58 |
|
sseq1 |
|
| 59 |
58
|
rexbidv |
|
| 60 |
59
|
elrab |
|
| 61 |
60
|
simprbi |
|
| 62 |
57 61
|
syl6 |
|
| 63 |
62
|
ralrimiv |
|
| 64 |
|
sseq2 |
|
| 65 |
64
|
ac6sfi |
|
| 66 |
65
|
ex |
|
| 67 |
63 66
|
syl5 |
|
| 68 |
67
|
adantl |
|
| 69 |
|
simprll |
|
| 70 |
|
frn |
|
| 71 |
69 70
|
syl |
|
| 72 |
|
simplr |
|
| 73 |
|
ffn |
|
| 74 |
|
dffn4 |
|
| 75 |
73 74
|
sylib |
|
| 76 |
75
|
adantr |
|
| 77 |
76
|
ad2antrl |
|
| 78 |
|
fodomfi |
|
| 79 |
72 77 78
|
syl2anc |
|
| 80 |
|
domfi |
|
| 81 |
72 79 80
|
syl2anc |
|
| 82 |
71 81
|
jca |
|
| 83 |
|
elin |
|
| 84 |
|
vex |
|
| 85 |
84
|
elpw2 |
|
| 86 |
85
|
anbi1i |
|
| 87 |
83 86
|
bitr2i |
|
| 88 |
82 87
|
sylib |
|
| 89 |
|
simprr |
|
| 90 |
|
uniiun |
|
| 91 |
|
simprlr |
|
| 92 |
|
ss2iun |
|
| 93 |
91 92
|
syl |
|
| 94 |
90 93
|
eqsstrid |
|
| 95 |
|
fniunfv |
|
| 96 |
69 73 95
|
3syl |
|
| 97 |
94 96
|
sseqtrd |
|
| 98 |
89 97
|
eqsstrd |
|
| 99 |
|
simpll2 |
|
| 100 |
71 99
|
sstrd |
|
| 101 |
|
uniss |
|
| 102 |
101 1
|
sseqtrrdi |
|
| 103 |
100 102
|
syl |
|
| 104 |
98 103
|
eqssd |
|
| 105 |
|
unieq |
|
| 106 |
105
|
eqeq2d |
|
| 107 |
106
|
rspcev |
|
| 108 |
88 104 107
|
syl2anc |
|
| 109 |
108
|
exp32 |
|
| 110 |
109
|
exlimdv |
|
| 111 |
68 110
|
syld |
|
| 112 |
111
|
ex |
|
| 113 |
112
|
com23 |
|
| 114 |
113
|
impd |
|
| 115 |
56 114
|
biimtrid |
|
| 116 |
115
|
rexlimdv |
|
| 117 |
55 116
|
syld |
|
| 118 |
117
|
3exp |
|
| 119 |
118
|
com34 |
|
| 120 |
119
|
com23 |
|
| 121 |
4 120
|
syl7bi |
|
| 122 |
121
|
ralrimdv |
|
| 123 |
|
fibas |
|
| 124 |
|
tgcl |
|
| 125 |
123 124
|
ax-mp |
|
| 126 |
|
eleq1 |
|
| 127 |
125 126
|
mpbiri |
|
| 128 |
122 127
|
jctild |
|
| 129 |
1
|
iscmp |
|
| 130 |
128 129
|
imbitrrdi |
|
| 131 |
3 130
|
syld |
|
| 132 |
131
|
imp |
|
| 133 |
132
|
exlimiv |
|
| 134 |
2 133
|
impbii |
|