Metamath Proof Explorer


Theorem alexsubALTlem1

Description: Lemma for alexsubALT . A compact space has a subbase such that every cover taken from it has a finite subcover. (Contributed by Jeff Hankins, 27-Jan-2010)

Ref Expression
Hypothesis alexsubALT.1 X = J
Assertion alexsubALTlem1 J Comp x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d

Proof

Step Hyp Ref Expression
1 alexsubALT.1 X = J
2 cmptop J Comp J Top
3 fitop J Top fi J = J
4 3 fveq2d J Top topGen fi J = topGen J
5 tgtop J Top topGen J = J
6 4 5 eqtr2d J Top J = topGen fi J
7 2 6 syl J Comp J = topGen fi J
8 velpw c 𝒫 J c J
9 1 cmpcov J Comp c J X = c d 𝒫 c Fin X = d
10 9 3exp J Comp c J X = c d 𝒫 c Fin X = d
11 8 10 syl5bi J Comp c 𝒫 J X = c d 𝒫 c Fin X = d
12 11 ralrimiv J Comp c 𝒫 J X = c d 𝒫 c Fin X = d
13 2fveq3 x = J topGen fi x = topGen fi J
14 13 eqeq2d x = J J = topGen fi x J = topGen fi J
15 pweq x = J 𝒫 x = 𝒫 J
16 15 raleqdv x = J c 𝒫 x X = c d 𝒫 c Fin X = d c 𝒫 J X = c d 𝒫 c Fin X = d
17 14 16 anbi12d x = J J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d J = topGen fi J c 𝒫 J X = c d 𝒫 c Fin X = d
18 17 spcegv J Comp J = topGen fi J c 𝒫 J X = c d 𝒫 c Fin X = d x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d
19 7 12 18 mp2and J Comp x J = topGen fi x c 𝒫 x X = c d 𝒫 c Fin X = d