Step |
Hyp |
Ref |
Expression |
1 |
|
alexsubALT.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
3 |
|
fitop |
⊢ ( 𝐽 ∈ Top → ( fi ‘ 𝐽 ) = 𝐽 ) |
4 |
3
|
fveq2d |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ ( fi ‘ 𝐽 ) ) = ( topGen ‘ 𝐽 ) ) |
5 |
|
tgtop |
⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |
6 |
4 5
|
eqtr2d |
⊢ ( 𝐽 ∈ Top → 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐽 ∈ Comp → 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) |
8 |
|
velpw |
⊢ ( 𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽 ) |
9 |
1
|
cmpcov |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
10 |
9
|
3exp |
⊢ ( 𝐽 ∈ Comp → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
11 |
8 10
|
syl5bi |
⊢ ( 𝐽 ∈ Comp → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
12 |
11
|
ralrimiv |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
13 |
|
2fveq3 |
⊢ ( 𝑥 = 𝐽 → ( topGen ‘ ( fi ‘ 𝑥 ) ) = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑥 = 𝐽 → ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ↔ 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ) ) |
15 |
|
pweq |
⊢ ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 ) |
16 |
15
|
raleqdv |
⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑥 = 𝐽 → ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ↔ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
18 |
17
|
spcegv |
⊢ ( 𝐽 ∈ Comp → ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝐽 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
19 |
7 12 18
|
mp2and |
⊢ ( 𝐽 ∈ Comp → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |