| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alexsubALT.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
alexsubALTlem1 |
⊢ ( 𝐽 ∈ Comp → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 3 |
1
|
alexsubALTlem4 |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 4 |
|
velpw |
⊢ ( 𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽 ) |
| 5 |
|
eleq2 |
⊢ ( 𝑋 = ∪ 𝑐 → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐 ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐 ) ) |
| 7 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ 𝑐 ↔ ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) ) |
| 8 |
|
ssel |
⊢ ( 𝑐 ⊆ 𝐽 → ( 𝑤 ∈ 𝑐 → 𝑤 ∈ 𝐽 ) ) |
| 9 |
|
eleq2 |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑤 ∈ 𝐽 ↔ 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) ) |
| 10 |
|
tg2 |
⊢ ( ( 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑡 ∈ 𝑤 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) |
| 11 |
10
|
ex |
⊢ ( 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) |
| 12 |
9 11
|
biimtrdi |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑤 ∈ 𝐽 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) ) |
| 13 |
8 12
|
sylan9r |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑤 ∈ 𝑐 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) ) |
| 14 |
13
|
3impia |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) |
| 15 |
|
sseq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑤 ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( 𝑤 ∈ 𝑐 ∧ 𝑦 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) |
| 17 |
16
|
ex |
⊢ ( 𝑤 ∈ 𝑐 → ( 𝑦 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑦 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) |
| 19 |
18
|
anim2d |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) → ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 20 |
19
|
reximdv |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 21 |
14 20
|
syld |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 22 |
21
|
3expia |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑤 ∈ 𝑐 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) ) |
| 23 |
22
|
com23 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑡 ∈ 𝑤 → ( 𝑤 ∈ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) ) |
| 24 |
23
|
impd |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 25 |
24
|
exlimdv |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 26 |
7 25
|
biimtrid |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑡 ∈ ∪ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ ∪ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 28 |
6 27
|
sylbid |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 29 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑧 ) ) |
| 30 |
|
elunii |
⊢ ( ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝑐 ) → 𝑡 ∈ ∪ 𝑐 ) |
| 31 |
30
|
expcom |
⊢ ( 𝑧 ∈ 𝑐 → ( 𝑡 ∈ 𝑧 → 𝑡 ∈ ∪ 𝑐 ) ) |
| 32 |
6
|
biimprd |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ ∪ 𝑐 → 𝑡 ∈ 𝑋 ) ) |
| 33 |
31 32
|
sylan9r |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑧 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑧 → 𝑡 ∈ 𝑋 ) ) |
| 34 |
29 33
|
syl9r |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑧 ∈ 𝑐 ) → ( 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋 ) ) ) |
| 35 |
34
|
rexlimdva |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋 ) ) ) |
| 36 |
35
|
com23 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑦 → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → 𝑡 ∈ 𝑋 ) ) ) |
| 37 |
36
|
impd |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) → 𝑡 ∈ 𝑋 ) ) |
| 38 |
37
|
rexlimdvw |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) → 𝑡 ∈ 𝑋 ) ) |
| 39 |
28 38
|
impbid |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 40 |
|
elunirab |
⊢ ( 𝑡 ∈ ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ↔ ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) |
| 41 |
39 40
|
bitr4di |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) |
| 42 |
41
|
eqrdv |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) |
| 43 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ⊆ ( fi ‘ 𝑥 ) |
| 44 |
|
fvex |
⊢ ( fi ‘ 𝑥 ) ∈ V |
| 45 |
44
|
elpw2 |
⊢ ( { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) ↔ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ⊆ ( fi ‘ 𝑥 ) ) |
| 46 |
43 45
|
mpbir |
⊢ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) |
| 47 |
|
unieq |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∪ 𝑎 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) |
| 48 |
47
|
eqeq2d |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑎 ↔ 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) |
| 49 |
|
pweq |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → 𝒫 𝑎 = 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) |
| 50 |
49
|
ineq1d |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝒫 𝑎 ∩ Fin ) = ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) ) |
| 51 |
50
|
rexeqdv |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ↔ ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 52 |
48 51
|
imbi12d |
⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ↔ ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 53 |
52
|
rspcv |
⊢ ( { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 54 |
46 53
|
ax-mp |
⊢ ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 55 |
42 54
|
syl5com |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 56 |
|
elfpw |
⊢ ( 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) ↔ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∧ 𝑏 ∈ Fin ) ) |
| 57 |
|
ssel |
⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑡 ∈ 𝑏 → 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) |
| 58 |
|
sseq1 |
⊢ ( 𝑦 = 𝑡 → ( 𝑦 ⊆ 𝑧 ↔ 𝑡 ⊆ 𝑧 ) ) |
| 59 |
58
|
rexbidv |
⊢ ( 𝑦 = 𝑡 → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 60 |
59
|
elrab |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ↔ ( 𝑡 ∈ ( fi ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 61 |
60
|
simprbi |
⊢ ( 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) |
| 62 |
57 61
|
syl6 |
⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑡 ∈ 𝑏 → ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 63 |
62
|
ralrimiv |
⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) |
| 64 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑡 ) → ( 𝑡 ⊆ 𝑧 ↔ 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) |
| 65 |
64
|
ac6sfi |
⊢ ( ( 𝑏 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) |
| 66 |
65
|
ex |
⊢ ( 𝑏 ∈ Fin → ( ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 67 |
63 66
|
syl5 |
⊢ ( 𝑏 ∈ Fin → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 68 |
67
|
adantl |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 69 |
|
simprll |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑓 : 𝑏 ⟶ 𝑐 ) |
| 70 |
|
frn |
⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → ran 𝑓 ⊆ 𝑐 ) |
| 71 |
69 70
|
syl |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ⊆ 𝑐 ) |
| 72 |
|
simplr |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑏 ∈ Fin ) |
| 73 |
|
ffn |
⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → 𝑓 Fn 𝑏 ) |
| 74 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑏 ↔ 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 75 |
73 74
|
sylib |
⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 77 |
76
|
ad2antrl |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 78 |
|
fodomfi |
⊢ ( ( 𝑏 ∈ Fin ∧ 𝑓 : 𝑏 –onto→ ran 𝑓 ) → ran 𝑓 ≼ 𝑏 ) |
| 79 |
72 77 78
|
syl2anc |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ≼ 𝑏 ) |
| 80 |
|
domfi |
⊢ ( ( 𝑏 ∈ Fin ∧ ran 𝑓 ≼ 𝑏 ) → ran 𝑓 ∈ Fin ) |
| 81 |
72 79 80
|
syl2anc |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ∈ Fin ) |
| 82 |
71 81
|
jca |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ) |
| 83 |
|
elin |
⊢ ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ↔ ( ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin ) ) |
| 84 |
|
vex |
⊢ 𝑐 ∈ V |
| 85 |
84
|
elpw2 |
⊢ ( ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓 ⊆ 𝑐 ) |
| 86 |
85
|
anbi1i |
⊢ ( ( ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin ) ↔ ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ) |
| 87 |
83 86
|
bitr2i |
⊢ ( ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ↔ ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 88 |
82 87
|
sylib |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 89 |
|
simprr |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 = ∪ 𝑏 ) |
| 90 |
|
uniiun |
⊢ ∪ 𝑏 = ∪ 𝑡 ∈ 𝑏 𝑡 |
| 91 |
|
simprlr |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) |
| 92 |
|
ss2iun |
⊢ ( ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) |
| 93 |
91 92
|
syl |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) |
| 94 |
90 93
|
eqsstrid |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑏 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) |
| 95 |
|
fniunfv |
⊢ ( 𝑓 Fn 𝑏 → ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) = ∪ ran 𝑓 ) |
| 96 |
69 73 95
|
3syl |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) = ∪ ran 𝑓 ) |
| 97 |
94 96
|
sseqtrd |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑏 ⊆ ∪ ran 𝑓 ) |
| 98 |
89 97
|
eqsstrd |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 ⊆ ∪ ran 𝑓 ) |
| 99 |
|
simpll2 |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑐 ⊆ 𝐽 ) |
| 100 |
71 99
|
sstrd |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ⊆ 𝐽 ) |
| 101 |
|
uniss |
⊢ ( ran 𝑓 ⊆ 𝐽 → ∪ ran 𝑓 ⊆ ∪ 𝐽 ) |
| 102 |
101 1
|
sseqtrrdi |
⊢ ( ran 𝑓 ⊆ 𝐽 → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 103 |
100 102
|
syl |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 104 |
98 103
|
eqssd |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 = ∪ ran 𝑓 ) |
| 105 |
|
unieq |
⊢ ( 𝑑 = ran 𝑓 → ∪ 𝑑 = ∪ ran 𝑓 ) |
| 106 |
105
|
eqeq2d |
⊢ ( 𝑑 = ran 𝑓 → ( 𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ ran 𝑓 ) ) |
| 107 |
106
|
rspcev |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑋 = ∪ ran 𝑓 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 108 |
88 104 107
|
syl2anc |
⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 109 |
108
|
exp32 |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 110 |
109
|
exlimdv |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 111 |
68 110
|
syld |
⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 112 |
111
|
ex |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ∈ Fin → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 113 |
112
|
com23 |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑏 ∈ Fin → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 114 |
113
|
impd |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∧ 𝑏 ∈ Fin ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 115 |
56 114
|
biimtrid |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 116 |
115
|
rexlimdv |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 117 |
55 116
|
syld |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 118 |
117
|
3exp |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 119 |
118
|
com34 |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑐 ⊆ 𝐽 → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 120 |
119
|
com23 |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 121 |
4 120
|
syl7bi |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 122 |
121
|
ralrimdv |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 123 |
|
fibas |
⊢ ( fi ‘ 𝑥 ) ∈ TopBases |
| 124 |
|
tgcl |
⊢ ( ( fi ‘ 𝑥 ) ∈ TopBases → ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top ) |
| 125 |
123 124
|
ax-mp |
⊢ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top |
| 126 |
|
eleq1 |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝐽 ∈ Top ↔ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top ) ) |
| 127 |
125 126
|
mpbiri |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 128 |
122 127
|
jctild |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 129 |
1
|
iscmp |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 130 |
128 129
|
imbitrrdi |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → 𝐽 ∈ Comp ) ) |
| 131 |
3 130
|
syld |
⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → 𝐽 ∈ Comp ) ) |
| 132 |
131
|
imp |
⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → 𝐽 ∈ Comp ) |
| 133 |
132
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → 𝐽 ∈ Comp ) |
| 134 |
2 133
|
impbii |
⊢ ( 𝐽 ∈ Comp ↔ ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |