Metamath Proof Explorer


Theorem ufilcmp

Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009) (Proof shortened by Mario Carneiro, 12-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ufilcmp XUFLJTopOnXJCompfUFilXJfLimf

Proof

Step Hyp Ref Expression
1 ufilfil fUFilJfFilJ
2 eqid J=J
3 2 fclscmpi JCompfFilJJfClusf
4 1 3 sylan2 JCompfUFilJJfClusf
5 4 ralrimiva JCompfUFilJJfClusf
6 toponuni JTopOnXX=J
7 6 fveq2d JTopOnXUFilX=UFilJ
8 7 raleqdv JTopOnXfUFilXJfClusffUFilJJfClusf
9 8 adantl XUFLJTopOnXfUFilXJfClusffUFilJJfClusf
10 5 9 imbitrrid XUFLJTopOnXJCompfUFilXJfClusf
11 ufli XUFLgFilXfUFilXgf
12 11 adantlr XUFLJTopOnXgFilXfUFilXgf
13 r19.29 fUFilXJfClusffUFilXgffUFilXJfClusfgf
14 simpllr XUFLJTopOnXgFilXfUFilXgfJTopOnX
15 simplr XUFLJTopOnXgFilXfUFilXgfgFilX
16 simprr XUFLJTopOnXgFilXfUFilXgfgf
17 fclsss2 JTopOnXgFilXgfJfClusfJfClusg
18 14 15 16 17 syl3anc XUFLJTopOnXgFilXfUFilXgfJfClusfJfClusg
19 ssn0 JfClusfJfClusgJfClusfJfClusg
20 19 ex JfClusfJfClusgJfClusfJfClusg
21 18 20 syl XUFLJTopOnXgFilXfUFilXgfJfClusfJfClusg
22 21 expr XUFLJTopOnXgFilXfUFilXgfJfClusfJfClusg
23 22 impcomd XUFLJTopOnXgFilXfUFilXJfClusfgfJfClusg
24 23 rexlimdva XUFLJTopOnXgFilXfUFilXJfClusfgfJfClusg
25 13 24 syl5 XUFLJTopOnXgFilXfUFilXJfClusffUFilXgfJfClusg
26 12 25 mpan2d XUFLJTopOnXgFilXfUFilXJfClusfJfClusg
27 26 ralrimdva XUFLJTopOnXfUFilXJfClusfgFilXJfClusg
28 fclscmp JTopOnXJCompgFilXJfClusg
29 28 adantl XUFLJTopOnXJCompgFilXJfClusg
30 27 29 sylibrd XUFLJTopOnXfUFilXJfClusfJComp
31 10 30 impbid XUFLJTopOnXJCompfUFilXJfClusf
32 uffclsflim fUFilXJfClusf=JfLimf
33 32 neeq1d fUFilXJfClusfJfLimf
34 33 ralbiia fUFilXJfClusffUFilXJfLimf
35 31 34 bitrdi XUFLJTopOnXJCompfUFilXJfLimf