Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009) (Proof shortened by Mario Carneiro, 12-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ufilcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil | |
|
2 | eqid | |
|
3 | 2 | fclscmpi | |
4 | 1 3 | sylan2 | |
5 | 4 | ralrimiva | |
6 | toponuni | |
|
7 | 6 | fveq2d | |
8 | 7 | raleqdv | |
9 | 8 | adantl | |
10 | 5 9 | imbitrrid | |
11 | ufli | |
|
12 | 11 | adantlr | |
13 | r19.29 | |
|
14 | simpllr | |
|
15 | simplr | |
|
16 | simprr | |
|
17 | fclsss2 | |
|
18 | 14 15 16 17 | syl3anc | |
19 | ssn0 | |
|
20 | 19 | ex | |
21 | 18 20 | syl | |
22 | 21 | expr | |
23 | 22 | impcomd | |
24 | 23 | rexlimdva | |
25 | 13 24 | syl5 | |
26 | 12 25 | mpan2d | |
27 | 26 | ralrimdva | |
28 | fclscmp | |
|
29 | 28 | adantl | |
30 | 27 29 | sylibrd | |
31 | 10 30 | impbid | |
32 | uffclsflim | |
|
33 | 32 | neeq1d | |
34 | 33 | ralbiia | |
35 | 31 34 | bitrdi | |