Metamath Proof Explorer


Theorem iscgrgd

Description: The property for two sequences A and B of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses iscgrg.p P=BaseG
iscgrg.m -˙=distG
iscgrg.e ˙=𝒢G
iscgrgd.g φGV
iscgrgd.d φD
iscgrgd.a φA:DP
iscgrgd.b φB:DP
Assertion iscgrgd φA˙BidomAjdomAAi-˙Aj=Bi-˙Bj

Proof

Step Hyp Ref Expression
1 iscgrg.p P=BaseG
2 iscgrg.m -˙=distG
3 iscgrg.e ˙=𝒢G
4 iscgrgd.g φGV
5 iscgrgd.d φD
6 iscgrgd.a φA:DP
7 iscgrgd.b φB:DP
8 1 fvexi PV
9 reex V
10 elpm2r PVVA:DPDAP𝑝𝑚
11 8 9 10 mpanl12 A:DPDAP𝑝𝑚
12 6 5 11 syl2anc φAP𝑝𝑚
13 elpm2r PVVB:DPDBP𝑝𝑚
14 8 9 13 mpanl12 B:DPDBP𝑝𝑚
15 7 5 14 syl2anc φBP𝑝𝑚
16 12 15 jca φAP𝑝𝑚BP𝑝𝑚
17 16 biantrurd φdomA=domBidomAjdomAAi-˙Aj=Bi-˙BjAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
18 6 fdmd φdomA=D
19 7 fdmd φdomB=D
20 18 19 eqtr4d φdomA=domB
21 20 biantrurd φidomAjdomAAi-˙Aj=Bi-˙BjdomA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
22 1 2 3 iscgrg GVA˙BAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
23 4 22 syl φA˙BAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
24 17 21 23 3bitr4rd φA˙BidomAjdomAAi-˙Aj=Bi-˙Bj