Metamath Proof Explorer


Theorem iscgrg

Description: The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses iscgrg.p P=BaseG
iscgrg.m -˙=distG
iscgrg.e ˙=𝒢G
Assertion iscgrg GVA˙BAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj

Proof

Step Hyp Ref Expression
1 iscgrg.p P=BaseG
2 iscgrg.m -˙=distG
3 iscgrg.e ˙=𝒢G
4 elex GVGV
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=P
7 6 oveq1d g=GBaseg𝑝𝑚=P𝑝𝑚
8 7 eleq2d g=GaBaseg𝑝𝑚aP𝑝𝑚
9 7 eleq2d g=GbBaseg𝑝𝑚bP𝑝𝑚
10 8 9 anbi12d g=GaBaseg𝑝𝑚bBaseg𝑝𝑚aP𝑝𝑚bP𝑝𝑚
11 fveq2 g=Gdistg=distG
12 11 2 eqtr4di g=Gdistg=-˙
13 12 oveqd g=Gaidistgaj=ai-˙aj
14 12 oveqd g=Gbidistgbj=bi-˙bj
15 13 14 eqeq12d g=Gaidistgaj=bidistgbjai-˙aj=bi-˙bj
16 15 2ralbidv g=Gidomajdomaaidistgaj=bidistgbjidomajdomaai-˙aj=bi-˙bj
17 16 anbi2d g=Gdoma=dombidomajdomaaidistgaj=bidistgbjdoma=dombidomajdomaai-˙aj=bi-˙bj
18 10 17 anbi12d g=GaBaseg𝑝𝑚bBaseg𝑝𝑚doma=dombidomajdomaaidistgaj=bidistgbjaP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
19 18 opabbidv g=Gab|aBaseg𝑝𝑚bBaseg𝑝𝑚doma=dombidomajdomaaidistgaj=bidistgbj=ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
20 df-cgrg 𝒢=gVab|aBaseg𝑝𝑚bBaseg𝑝𝑚doma=dombidomajdomaaidistgaj=bidistgbj
21 df-xp P𝑝𝑚×P𝑝𝑚=ab|aP𝑝𝑚bP𝑝𝑚
22 ovex P𝑝𝑚V
23 22 22 xpex P𝑝𝑚×P𝑝𝑚V
24 21 23 eqeltrri ab|aP𝑝𝑚bP𝑝𝑚V
25 simpl aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bjaP𝑝𝑚bP𝑝𝑚
26 25 ssopab2i ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bjab|aP𝑝𝑚bP𝑝𝑚
27 24 26 ssexi ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bjV
28 19 20 27 fvmpt GV𝒢G=ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
29 4 28 syl GV𝒢G=ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
30 3 29 eqtrid GV˙=ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
31 30 breqd GVA˙BAab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bjB
32 dmeq a=Adoma=domA
33 32 eqeq1d a=Adoma=dombdomA=domb
34 32 adantr a=Aidomadoma=domA
35 simpll a=Aidomajdomaa=A
36 35 fveq1d a=Aidomajdomaai=Ai
37 35 fveq1d a=Aidomajdomaaj=Aj
38 36 37 oveq12d a=Aidomajdomaai-˙aj=Ai-˙Aj
39 38 eqeq1d a=Aidomajdomaai-˙aj=bi-˙bjAi-˙Aj=bi-˙bj
40 34 39 raleqbidva a=Aidomajdomaai-˙aj=bi-˙bjjdomAAi-˙Aj=bi-˙bj
41 32 40 raleqbidva a=Aidomajdomaai-˙aj=bi-˙bjidomAjdomAAi-˙Aj=bi-˙bj
42 33 41 anbi12d a=Adoma=dombidomajdomaai-˙aj=bi-˙bjdomA=dombidomAjdomAAi-˙Aj=bi-˙bj
43 dmeq b=Bdomb=domB
44 43 eqeq2d b=BdomA=dombdomA=domB
45 fveq1 b=Bbi=Bi
46 fveq1 b=Bbj=Bj
47 45 46 oveq12d b=Bbi-˙bj=Bi-˙Bj
48 47 eqeq2d b=BAi-˙Aj=bi-˙bjAi-˙Aj=Bi-˙Bj
49 48 2ralbidv b=BidomAjdomAAi-˙Aj=bi-˙bjidomAjdomAAi-˙Aj=Bi-˙Bj
50 44 49 anbi12d b=BdomA=dombidomAjdomAAi-˙Aj=bi-˙bjdomA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
51 42 50 sylan9bb a=Ab=Bdoma=dombidomajdomaai-˙aj=bi-˙bjdomA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
52 eqid ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj=ab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bj
53 51 52 brab2a Aab|aP𝑝𝑚bP𝑝𝑚doma=dombidomajdomaai-˙aj=bi-˙bjBAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj
54 31 53 bitrdi GVA˙BAP𝑝𝑚BP𝑝𝑚domA=domBidomAjdomAAi-˙Aj=Bi-˙Bj