| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscgrg.p |
|
| 2 |
|
iscgrg.m |
|
| 3 |
|
iscgrg.e |
|
| 4 |
|
elex |
|
| 5 |
|
fveq2 |
|
| 6 |
5 1
|
eqtr4di |
|
| 7 |
6
|
oveq1d |
|
| 8 |
7
|
eleq2d |
|
| 9 |
7
|
eleq2d |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
|
fveq2 |
|
| 12 |
11 2
|
eqtr4di |
|
| 13 |
12
|
oveqd |
|
| 14 |
12
|
oveqd |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
2ralbidv |
|
| 17 |
16
|
anbi2d |
|
| 18 |
10 17
|
anbi12d |
|
| 19 |
18
|
opabbidv |
|
| 20 |
|
df-cgrg |
|
| 21 |
|
df-xp |
|
| 22 |
|
ovex |
|
| 23 |
22 22
|
xpex |
|
| 24 |
21 23
|
eqeltrri |
|
| 25 |
|
simpl |
|
| 26 |
25
|
ssopab2i |
|
| 27 |
24 26
|
ssexi |
|
| 28 |
19 20 27
|
fvmpt |
|
| 29 |
4 28
|
syl |
|
| 30 |
3 29
|
eqtrid |
|
| 31 |
30
|
breqd |
|
| 32 |
|
dmeq |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
32
|
adantr |
|
| 35 |
|
simpll |
|
| 36 |
35
|
fveq1d |
|
| 37 |
35
|
fveq1d |
|
| 38 |
36 37
|
oveq12d |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
34 39
|
raleqbidva |
|
| 41 |
32 40
|
raleqbidva |
|
| 42 |
33 41
|
anbi12d |
|
| 43 |
|
dmeq |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
|
fveq1 |
|
| 46 |
|
fveq1 |
|
| 47 |
45 46
|
oveq12d |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
48
|
2ralbidv |
|
| 50 |
44 49
|
anbi12d |
|
| 51 |
42 50
|
sylan9bb |
|
| 52 |
|
eqid |
|
| 53 |
51 52
|
brab2a |
|
| 54 |
31 53
|
bitrdi |
|