| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscgrg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | iscgrg.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | iscgrg.e |  |-  .~ = ( cgrG ` G ) | 
						
							| 4 |  | elex |  |-  ( G e. V -> G e. _V ) | 
						
							| 5 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = P ) | 
						
							| 7 | 6 | oveq1d |  |-  ( g = G -> ( ( Base ` g ) ^pm RR ) = ( P ^pm RR ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( g = G -> ( a e. ( ( Base ` g ) ^pm RR ) <-> a e. ( P ^pm RR ) ) ) | 
						
							| 9 | 7 | eleq2d |  |-  ( g = G -> ( b e. ( ( Base ` g ) ^pm RR ) <-> b e. ( P ^pm RR ) ) ) | 
						
							| 10 | 8 9 | anbi12d |  |-  ( g = G -> ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) <-> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( g = G -> ( dist ` g ) = ( dist ` G ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( g = G -> ( dist ` g ) = .- ) | 
						
							| 13 | 12 | oveqd |  |-  ( g = G -> ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( a ` i ) .- ( a ` j ) ) ) | 
						
							| 14 | 12 | oveqd |  |-  ( g = G -> ( ( b ` i ) ( dist ` g ) ( b ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( g = G -> ( ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) | 
						
							| 16 | 15 | 2ralbidv |  |-  ( g = G -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) <-> A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) | 
						
							| 17 | 16 | anbi2d |  |-  ( g = G -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) <-> ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) | 
						
							| 18 | 10 17 | anbi12d |  |-  ( g = G -> ( ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) <-> ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) ) | 
						
							| 19 | 18 | opabbidv |  |-  ( g = G -> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
							| 20 |  | df-cgrg |  |-  cgrG = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^pm RR ) /\ b e. ( ( Base ` g ) ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) ( dist ` g ) ( a ` j ) ) = ( ( b ` i ) ( dist ` g ) ( b ` j ) ) ) ) } ) | 
						
							| 21 |  | df-xp |  |-  ( ( P ^pm RR ) X. ( P ^pm RR ) ) = { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } | 
						
							| 22 |  | ovex |  |-  ( P ^pm RR ) e. _V | 
						
							| 23 | 22 22 | xpex |  |-  ( ( P ^pm RR ) X. ( P ^pm RR ) ) e. _V | 
						
							| 24 | 21 23 | eqeltrri |  |-  { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } e. _V | 
						
							| 25 |  | simpl |  |-  ( ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) -> ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) ) | 
						
							| 26 | 25 | ssopab2i |  |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } C_ { <. a , b >. | ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) } | 
						
							| 27 | 24 26 | ssexi |  |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } e. _V | 
						
							| 28 | 19 20 27 | fvmpt |  |-  ( G e. _V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
							| 29 | 4 28 | syl |  |-  ( G e. V -> ( cgrG ` G ) = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
							| 30 | 3 29 | eqtrid |  |-  ( G e. V -> .~ = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } ) | 
						
							| 31 | 30 | breqd |  |-  ( G e. V -> ( A .~ B <-> A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B ) ) | 
						
							| 32 |  | dmeq |  |-  ( a = A -> dom a = dom A ) | 
						
							| 33 | 32 | eqeq1d |  |-  ( a = A -> ( dom a = dom b <-> dom A = dom b ) ) | 
						
							| 34 | 32 | adantr |  |-  ( ( a = A /\ i e. dom a ) -> dom a = dom A ) | 
						
							| 35 |  | simpll |  |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> a = A ) | 
						
							| 36 | 35 | fveq1d |  |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` i ) = ( A ` i ) ) | 
						
							| 37 | 35 | fveq1d |  |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( a ` j ) = ( A ` j ) ) | 
						
							| 38 | 36 37 | oveq12d |  |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( a ` i ) .- ( a ` j ) ) = ( ( A ` i ) .- ( A ` j ) ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ( ( a = A /\ i e. dom a ) /\ j e. dom a ) -> ( ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) | 
						
							| 40 | 34 39 | raleqbidva |  |-  ( ( a = A /\ i e. dom a ) -> ( A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) | 
						
							| 41 | 32 40 | raleqbidva |  |-  ( a = A -> ( A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) | 
						
							| 42 | 33 41 | anbi12d |  |-  ( a = A -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) ) | 
						
							| 43 |  | dmeq |  |-  ( b = B -> dom b = dom B ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( b = B -> ( dom A = dom b <-> dom A = dom B ) ) | 
						
							| 45 |  | fveq1 |  |-  ( b = B -> ( b ` i ) = ( B ` i ) ) | 
						
							| 46 |  | fveq1 |  |-  ( b = B -> ( b ` j ) = ( B ` j ) ) | 
						
							| 47 | 45 46 | oveq12d |  |-  ( b = B -> ( ( b ` i ) .- ( b ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) | 
						
							| 48 | 47 | eqeq2d |  |-  ( b = B -> ( ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) | 
						
							| 49 | 48 | 2ralbidv |  |-  ( b = B -> ( A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) <-> A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) | 
						
							| 50 | 44 49 | anbi12d |  |-  ( b = B -> ( ( dom A = dom b /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) | 
						
							| 51 | 42 50 | sylan9bb |  |-  ( ( a = A /\ b = B ) -> ( ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) <-> ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) | 
						
							| 52 |  | eqid |  |-  { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } = { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } | 
						
							| 53 | 51 52 | brab2a |  |-  ( A { <. a , b >. | ( ( a e. ( P ^pm RR ) /\ b e. ( P ^pm RR ) ) /\ ( dom a = dom b /\ A. i e. dom a A. j e. dom a ( ( a ` i ) .- ( a ` j ) ) = ( ( b ` i ) .- ( b ` j ) ) ) ) } B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) | 
						
							| 54 | 31 53 | bitrdi |  |-  ( G e. V -> ( A .~ B <-> ( ( A e. ( P ^pm RR ) /\ B e. ( P ^pm RR ) ) /\ ( dom A = dom B /\ A. i e. dom A A. j e. dom A ( ( A ` i ) .- ( A ` j ) ) = ( ( B ` i ) .- ( B ` j ) ) ) ) ) ) |