Metamath Proof Explorer


Theorem ischn

Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Assertion ischn C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n

Proof

Step Hyp Ref Expression
1 dmeq c = C dom c = dom C
2 1 difeq1d c = C dom c 0 = dom C 0
3 fveq1 c = C c n 1 = C n 1
4 fveq1 c = C c n = C n
5 3 4 breq12d c = C c n 1 < ˙ c n C n 1 < ˙ C n
6 2 5 raleqbidv c = C n dom c 0 c n 1 < ˙ c n n dom C 0 C n 1 < ˙ C n
7 df-chn Chain A < ˙ = c Word A | n dom c 0 c n 1 < ˙ c n
8 6 7 elrab2 C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n