Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Extensible Structures
Chains
ischn
Next ⟩
chnwrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ischn
Description:
Property of being a chain.
(Contributed by
Thierry Arnoux
, 19-Jun-2025)
Ref
Expression
Assertion
ischn
⊢
C
∈
Chain
A
<
˙
↔
C
∈
Word
A
∧
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n
Proof
Step
Hyp
Ref
Expression
1
dmeq
⊢
c
=
C
→
dom
⁡
c
=
dom
⁡
C
2
1
difeq1d
⊢
c
=
C
→
dom
⁡
c
∖
0
=
dom
⁡
C
∖
0
3
fveq1
⊢
c
=
C
→
c
⁡
n
−
1
=
C
⁡
n
−
1
4
fveq1
⊢
c
=
C
→
c
⁡
n
=
C
⁡
n
5
3
4
breq12d
⊢
c
=
C
→
c
⁡
n
−
1
<
˙
c
⁡
n
↔
C
⁡
n
−
1
<
˙
C
⁡
n
6
2
5
raleqbidv
⊢
c
=
C
→
∀
n
∈
dom
⁡
c
∖
0
c
⁡
n
−
1
<
˙
c
⁡
n
↔
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n
7
df-chn
⊢
Chain
A
<
˙
=
c
∈
Word
A
|
∀
n
∈
dom
⁡
c
∖
0
c
⁡
n
−
1
<
˙
c
⁡
n
8
6
7
elrab2
⊢
C
∈
Chain
A
<
˙
↔
C
∈
Word
A
∧
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n