Metamath Proof Explorer


Theorem iscmet3i

Description: Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007) (Revised by Mario Carneiro, 5-May-2014)

Ref Expression
Hypotheses iscmet3i.2 J=MetOpenD
iscmet3i.3 DMetX
iscmet3i.4 fCauDf:XfdomtJ
Assertion iscmet3i DCMetX

Proof

Step Hyp Ref Expression
1 iscmet3i.2 J=MetOpenD
2 iscmet3i.3 DMetX
3 iscmet3i.4 fCauDf:XfdomtJ
4 nnuz =1
5 1zzd 1
6 2 a1i DMetX
7 4 1 5 6 iscmet3 DCMetXfCauDf:XfdomtJ
8 7 mptru DCMetXfCauDf:XfdomtJ
9 3 ex fCauDf:XfdomtJ
10 8 9 mprgbir DCMetX