Metamath Proof Explorer


Theorem iscmnd

Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses iscmnd.b φB=BaseG
iscmnd.p φ+˙=+G
iscmnd.g φGMnd
iscmnd.c φxByBx+˙y=y+˙x
Assertion iscmnd φGCMnd

Proof

Step Hyp Ref Expression
1 iscmnd.b φB=BaseG
2 iscmnd.p φ+˙=+G
3 iscmnd.g φGMnd
4 iscmnd.c φxByBx+˙y=y+˙x
5 4 3expib φxByBx+˙y=y+˙x
6 5 ralrimivv φxByBx+˙y=y+˙x
7 2 oveqd φx+˙y=x+Gy
8 2 oveqd φy+˙x=y+Gx
9 7 8 eqeq12d φx+˙y=y+˙xx+Gy=y+Gx
10 1 9 raleqbidv φyBx+˙y=y+˙xyBaseGx+Gy=y+Gx
11 1 10 raleqbidv φxByBx+˙y=y+˙xxBaseGyBaseGx+Gy=y+Gx
12 11 anbi2d φGMndxByBx+˙y=y+˙xGMndxBaseGyBaseGx+Gy=y+Gx
13 3 6 12 mpbi2and φGMndxBaseGyBaseGx+Gy=y+Gx
14 eqid BaseG=BaseG
15 eqid +G=+G
16 14 15 iscmn GCMndGMndxBaseGyBaseGx+Gy=y+Gx
17 13 16 sylibr φGCMnd